先照抄悖论全文如下:
纽卡悖论M:一天,一个由外层空间来的超级生物欧米加在地球着陆。
M:欧米加搞出一个设备来研究人的大脑。他可以十分准确地预言每一个人在二者择一时会选择哪一个。
M:欧米加用两个大箱子检验了很多人。箱子A是透明的,总是装着1千美元。箱子B不透明,它要么装着1百万美元,要么空着。
M:欧米加告诉每一个受试者。
欧米加:你有两种选择,一种是你拿走两个箱子,可以获得其中的东西。可是,当我预计你这样做时,我就让箱子B空着。你就只能得到1千美元。
欧米加:另一种选择是只拿一个箱子B。如果我预计你这样做时,我就放进箱子B中1百万美元。你能得到全部款子。
M:这个男人决定只拿箱子B。他的理由是——
男:我已看见欧米加尝试了几百次,每次他都预计对了。凡是拿两个箱子的人,只能得到l千美元。所以我只拿箱子B,就可变成一个百万富翁。
M:这个女孩决定要拿两个箱子,她的理由是——
女:欧米加已经做完了他的预言,并已离开。箱子不会再变了。如果是空的,它还是空的。如果它是有钱的,它还是有钱。所以我要拿两个箱子,就可以得到里面所有的钱。
M:你认为谁的决定最好?两种看法不可能都对。哪一种错了?它为何错了?这是一个新的悖论,而专家们还不知道如何解决它。
——————————悖论结束分割线——————————————
大约五年前我从图书馆借了一本罗伯特·诺齐克的著作《苏格拉底的困惑》,里面提到纽康姆悖论,当时颇不以为然,觉得这个悖论是trivial的,甚至谈不上算是一个悖论。昨天在下班地铁上读迈克尔·阿林厄姆的《选择理论》,里面又提到了这个悖论,于是又考虑了一下,结论还是没变,这个悖论的确是trivial的。
以下简单展开说一下。
这个悖论里面的一个关键点是“他可以十分准确地预言每一个人在二者择一时会选择哪一个。 ”这句话有两种可能make sense的理解:一是博弈论视角下,基于理性人假设,每一个博弈参与者的行为在给定的环境下都是可以预期的,被预期到的结果就是纳什均衡、贝叶斯纳什均衡或者序贯均衡;二是在决定论视角下,基于神秘主义信念,每个人的行为都是前定的,被某个神秘者控制着,自由意志并不存在,一旦某项行为被神秘者预测为必然如此,则必然会被执行。
无论从其中哪一个视角来理解,这个场景下都没有悖论出现。仅仅是因为两种不同的理解而出现的看似相反的结论,是类似于欧式几何和非欧几何的关系,没有任何悖论可言。
如果遵循前一种视角来看,到了选择拿一只箱子还是两只的时候,欧米加的之前基于预测的行为已经构成了环境的一部分,不会发生变化了。这时候女孩的选择是对的,多拿一只箱子构成占优策略。当然,为了保证前期预设的合理性,这时候,我们需要很清楚的反推出欧米加的B箱的确是空的。如果有人再多问一句:“那万一有人按照男孩的选择,只拿了B箱,不就说明欧米加预测错了吗?”这个质疑不会带来任何严重的问题——对于一个定义良好的纳什均衡(或者属于其子集的占优均衡)而言,均衡外路径本身就不会出现,也就是说——对于欧米加而言,这是一个不存在的错误。
如果遵循后一种视角,选择在人这里是不存在的。无论人是执行了“选一只箱子”还是“选两只箱子”,事实上都不是人的选择,而仅仅是欧米加的行为投射到了人身上得以执行。在这一视角下,对人而言其实根本谈不上任何决定。因此“选一只箱子”或“选两只箱子”都可以构成一个不存在逻辑悖论的事实。
一个因为语意上的指示不清而可能出现两种相反理解的场景,被受过专业训练的哲学家称为“悖论”,在我看来,对该哲学家而言,是一件有丢人嫌疑的事情。
网友评论