游戏用户流失预测数据分析

作者: 天善智能 | 来源:发表于2017-08-04 11:35 被阅读195次

    感谢关注天善智能,走好数据之路↑↑↑

    欢迎关注天善智能,我们是专注于商业智能BI,大数据,数据分析领域的垂直社区,学习,问答、求职一站式搞定!

    练习数据来源

    谢佳标老师R语言游戏数据分析和挖掘中的第8章:用户流失预测数据.csv

    数据分析方法

    使用各种分类算法(二元logistic回归、决策树、随机森林、人工神经网络)

    分析步骤

    按照谢老师文章中的步骤,依次为:

    步骤1:数据转换:增加周活跃度和玩牌胜率等衍生指标。周活跃度=登录总次数/7;玩牌胜率=赢牌局数/玩牌局数;玩牌负率=输牌局数/玩牌局数。

    步骤2:变量相关性分析:考虑因子变量的哑变量处理

    步骤3:10折交叉验证进行模型优化参数选择

    步骤4:构建决策树、随机森林、人工神经网络构建三种分类模型,并比较各分类器结果,选择最优分类器。

    分析

    ##导入数据

    说明:共1309条记录,13个字段。数据已经经过清洗,无缺失值,且变量属性无需修改。

    > userchurn<-read.csv("E:\\R语言\\Game_DataMining_With_R-master\\data\\第8章\\用户流失预测数据.csv",header=T)> str(userchurn)'data.frame':1309 obs. of13variables:$ 用户id : int12345678910 ...$ 是否流失 : Factor w/2levels "否","是":2112221221 ...$ 性别 : Factor w/2levels "男","女":1111111111 ...$ 登录总次数: int2332227226 ...$ 站内好友数: int1510101000 ...$ 等级 : int4674446343 ...$ 积分 : int058000260020 ...$ 玩牌局数 : int27832091530186510156 ...$ 赢牌局数 : int4405643810382 ...$ 输牌局数 : int04315300055074 ...$ 正常牌局 : int01101630186410156 ...$ 非正常牌局: int0000001000 ...$ 最高牌类型: int0780007084 ...

    >summary(userchurn) 用户id是否流失 性别 登录总次数 站内好友数Min. : 1 否: 291 男:1057Min. : 2.00Min. : 0.0001stQu.: 328 是:1018女: 252 1stQu.: 2.001stQu.: 0.000Median: 655Median: 2.00Median: 1.000Mean: 655Mean: 2.81Mean: 1.3413rdQu.: 982 3rdQu.: 3.003rdQu.: 2.000Max.:1309Max.:11.00Max.:22.000等级 积分 玩牌局数 赢牌局数Min. : 0.000Min. : 0.000Min. : 1.0Min. : 1.001stQu.: 3.0001stQu.: 0.0001stQu.: 8.01stQu.: 2.00Median: 4.000Median: 0.000Median: 23.0Median: 7.00Mean: 4.361Mean: 7.257Mean: 104.4Mean: 26.533rdQu.: 5.0003rdQu.: 5.0003rdQu.: 63.03rdQu.: 19.00Max.:16.000Max.:595.000Max.:7215.0Max.:2023.00输牌局数 正常牌局 非正常牌局 最高牌类型Min. : 0.00Min. : 0.0Min. : 0.000Min. : 0.0001stQu.: 0.001stQu.: 8.01stQu.: 0.0001stQu.: 0.000Median: 0.00Median: 22.0Median: 0.000Median: 0.000Mean: 69.05Mean: 110.2Mean: 1.483Mean: 3.4753rdQu.: 29.003rdQu.: 63.03rdQu.: 0.0003rdQu.: 8.000Max.:6568.00Max.:12425.0Max.:284.000Max.:11.000

    ##变量转换

    > ##变量转换> userchurn$周活跃度<-round(userchurn$登录总次数/7,3)> userchurn$玩牌胜率<-round(userchurn$赢牌局数/userchurn$玩牌局数,3)> userchurn$玩牌负率<-round(userchurn$输牌局数/userchurn$玩牌局数,3)

    考虑到自己电脑对中文不太友好,后续建模时总是出现警告,所以尽量将汉字字符改为英文字符,字段名则不需要改。

    > levels(userchurn$是否流失)<-c("0","1")##0表示不会,1表示会> levels(userchurn$性别)<-c("M","F")

    ##相关性分析

    > library(caret)> userchurn_dummy<-dummyVars(~.,data=userchurn)> userchurn_dummy_pre<-as.data.frame(predict(userchurn_dummy,userchurn))> str(userchurn_dummy_pre)'data.frame':1309 obs. of18variables:$ 用户id : num12345678910 ...$ 是否流失.0: num0110001001 ...$ 是否流失.1: num1001110110 ...$ 性别.M : num1111111111 ...$ 性别.F : num0000000000 ...$ 登录总次数: num2332227226 ...$ 站内好友数: num1510101000 ...$ 等级 : num4674446343 ...$ 积分 : num058000260020 ...$ 玩牌局数 : num27832091530186510156 ...$ 赢牌局数 : num4405643810382 ...$ 输牌局数 : num04315300055074 ...$ 正常牌局 : num01101630186410156 ...$ 非正常牌局: num0000001000 ...$ 最高牌类型: num0780007084 ...$ 周活跃度 : num 0.286 0.429 0.429 0.286 0.286 0.28610.286 0.286 0.857 ...$ 玩牌胜率 : num 0.148 0.482 0.268 0.267 0.1 0.444 0.154 0.3 0.533 0.333 ...$ 玩牌负率 : num00.518 0.7320000.84600.467 0.667 ...

    ##构建相关矩阵

    说明:可以看出用户流失除了与性别不相关外,和其他变量都相关,其中和登录总数、周活跃度、最高牌类型、玩牌负率、等级相关性比较高

    > cor<-cor(userchurn_dummy_pre[,2:3],userchurn_dummy_pre[,-c(1:3)])##本次分析主要是看是否流失字段与其他变量之间的相关性,所以需要筛选>library(corrplot)> corrplot(cor,method="ellipse")

    ##筛选变量

    说明:由于周活跃度、玩牌胜率是通过其他字段转换而来,所以和涉及的字段存在着很强相关性。在后续的分析中,与谢老师分析的不一样的是,我直接剔除了登录总数、玩牌局数以及赢牌局数,输牌局数。

    > user_select<-userchurn[,-c(1,4,8,9,10)]

    ##数据分区

    训练集:测试集=7:3

    > library(caret)> ind<-createDataPartition(user_select$是否流失,times=1,p=0.7,list=F)> train_data<-user_select[ind,]> test_data<-user_select[-ind,]

    ##10折交叉验证选择模型优化参数

    > control<-trainControl(method= "repeatedcv",number= 10,repeats= 3)

    #c5.0模型参数选择

    >library(C50)>library(plyr)> c5.0_train<-train(是否流失~.,data=train_data,method="C5.0",trControl=control)

    说明:最优模型参数选择:trials = 1, model = rules and winnow= TRUE。

    > c5.0_trainC5.0917samples10 predictor2classes: '0', '1'No pre-processingResampling: Cross-Validated (10fold, repeated3times)Summary of sample sizes:824,826,826,825,826,824, ...Resampling results across tuning parameters: model winnow trials Accuracy Kappa  rules FALSE10.91971420.7703119rules FALSE100.92153390.7724119rules FALSE200.91936760.7667339rules TRUE10.92696060.7795767rules TRUE100.91641350.7518620rules TRUE200.91893000.7622875tree FALSE10.92553520.7854662tree FALSE100.91208920.7514866tree FALSE200.91459770.7562199tree TRUE10.92477870.7758407tree TRUE100.91857570.7670737tree TRUE200.91348720.7519007Accuracy was used to select the optimal model using the largest value.The final values used for the model were trials =1, model = rules and winnow= TRUE.

    #randomForest模型参数选择

    说明:最优模型参数选择:mtry = 6

    > randomForest_train<-train(是否流失~.,data=train_data,method="rf",trControl=control)>randomForest_trainRandomForest917samples10predictor2classes:'0','1'No pre-processingResampling: Cross-Validated (10fold, repeated3times)Summaryofsample sizes:826,824,825,826,825,824, ...Resampling results across tuning parameters: mtry Accuracy Kappa20.91278430.747667960.92005480.7704936100.91897980.7688598Accuracy was usedtoselectthe optimal modelusingthe largest value.Thefinalvalue usedforthe model was mtry =6.

    #nnet模型参数选择

    说明:最优模型参数选择:size = 1 and decay = 0.1

    > nnet_train<-train(是否流失~.,data=train_data,method="nnet",trControl=control)>nnet_trainNeuralNetwork917samples10predictor2classes:'0','1'No pre-processingResampling: Cross-Validated (10fold, repeated3times)Summaryofsample sizes:825,825,826,826,826,824, ...Resampling results across tuning parameters: size decay Accuracy Kappa10e+000.86989030.551619811e-040.86536390.498178911e-010.91532120.744684130e+000.90291490.736618731e-040.90101980.716477931e-010.91240690.742237650e+000.90297030.717803551e-040.90440320.730357351e-010.90984260.7375306Accuracy was usedtoselectthe optimal modelusingthe largest value.Thefinalvalues usedforthe model were size =1anddecay =0.1.

    ##模型构建

    #构建c5.0决策树模型

    > fit_c5.0<-C5.0(是否流失~.,data=train_data,trails=1,rules=T,control=C5.0Control(winnow = TRUE))> summary(fit_c5.0)Call:C5.0.formula(formula = 是否流失 ~ ., data = train_data, trails = 1, rules =T, control = C5.0Control(winnow = TRUE))C5.0 [Release 2.07 GPL Edition] Thu Aug 03 20:39:16 2017-------------------------------Classspecifiedbyattribute`outcome'Read917 cases (11 attributes) from undefined.data3 attributes winnowedEstimated importance of remaining attributes: 176% 周活跃度 16% 站内好友数 11% 积分 8% 正常牌局 <1% 性别 <1% 非正常牌局 <1% 最高牌类型Rules:Rule 1: (5, lift 3.9)站内好友数 > 0站内好友数 <= 2积分 <= 6正常牌局 <= 8周活跃度 > 0.286->class0 [0.857]Rule 2: (292/88, lift 3.1)周活跃度 > 0.286->class0 [0.697]Rule 3: (625, lift 1.3)周活跃度 <= 0.286->class1 [0.998]Rule 4: (621/26, lift 1.2)站内好友数 <= 2积分 <= 5->class1 [0.957]Defaultclass: 1Evaluationontraining data (917 cases): Rules  ----------------NoErrors 4 60( 6.5%) << (a) (b) <-classifiedas---- ---- 183 21 (a):class0 39 674 (b):class1Attribute usage:100.00%周活跃度67.72%站内好友数67.72%积分 0.55%正常牌局> ##训练集预测> pre_c5.0_train<-predict(fit_c5.0,train_data,type="class")> ##测试集预测> pre_c5.0_test<-predict(fit_c5.0,test_data,type="class")

    说明:混淆矩阵给出了交叉表的各种指标值。后续每个模型都会用到这一函数。可以在模型比较中,一次性对各模型混淆矩阵结果进行比较。>t_c5.0_test<-confusionMatrix(pre_c5.0_test,test_data$是否流失)> t_c5.0Confusion MatrixandStatistics ReferencePrediction0107417113288Accuracy : 0.9235  95%CI: (0.8925, 0.9478) No Information Rate : 0.7781P-Value [Acc > NIR] : 9.13e-15Kappa : 0.782Mcnemar'sTest P-Value : 0.5839Sensitivity: 0.8506Specificity: 0.9443PosPred Value : 0.8132NegPred Value : 0.9568Prevalence: 0.2219DetectionRate : 0.1888DetectionPrevalence : 0.2321BalancedAccuracy : 0.8974  'Positive' Class : 0

    #构建随机森林

    说明:对于模型构建最重要的变量依次为:周活跃率、积分、玩牌负率、正常牌局、玩牌胜率

    > library(randomForest)> fit_randomForest<-randomForest(是否流失~.,data=train_data,mtry=6)> importance(fit_randomForest) MeanDecreaseGini性别1.924600站内好友数9.544445等级6.067091积分69.063727正常牌局19.967124非正常牌局3.097177最高牌类型7.810529周活跃度152.745122玩牌胜率19.573530玩牌负率29.008260> varImpPlot(fit_randomForest)> ##训练集预测> pre_randomForest_train<-predict(fit_randomForest,train_data,type="class")> ##测试集预测> pre_randomForest_test<-predict(fit_randomForest,test_data,type="class")

    #神经网络模型构建

    > library(nnet)> fit_nnet<-nnet(train_data$是否流失~., train_data,size=1,range=0.1,decay=0.1,maxit=200)> ##训练集预测> pre_nnet_train<-predict(fit_nnet,train_data,type ="class")> ##测试集预测> pre_nnet_test<-predict(fit_nnet,test_data,type ="class")

    #二元Logistic回归建模

    > fit_Logistic<-glm(是否流失~., train_data,family=binomial())> step_logistic<-step(fit_Logistic)

    说明:使用step逐步回归后,得到的AIC=286.71,最终选入正常牌局 、 最高牌类型 、 周活跃度三个字段

    > summary(step_logistic)Call:glm(formula = 是否流失 ~ 正常牌局 + 最高牌类型 + 周活跃度, family = binomial(), data = train_data)Deviance Residuals: Min 1Q Median 3Q Max-1.9260 0.1362 0.1400 0.1842 3.2236 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.052e+017.890e-0113.331 < 2e-16***正常牌局 1.414e-033.697e-043.826 0.00013 ***最高牌类型-1.359e-015.779e-02-2.352 0.01865 * 周活跃度-2.066e+012.017e+00-10.242 < 2e-16***---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1(Dispersion parameter for binomial family taken to be 1) Null deviance: 972.04 on 916 degrees of freedomResidual deviance: 278.71 on 913 degrees of freedomAIC: 286.71Number of Fisher Scoring iterations: 7

    说明:logistic原始模型与step回归后模型比较,P值=0.8026,说明逐步回归后得到的模型效度并没有显著降低原始模型的效度。

    >anova(fit_Logistic,step_logistic,test="Chisq")Analysis of Deviance TableModel 1: 是否流失 ~ 性别 + 站内好友数 + 等级 + 积分 + 正常牌局 + 非正常牌局 + 最高牌类型 + 周活跃度 + 玩牌胜率 + 玩牌负率Model 2: 是否流失 ~ 正常牌局 + 最高牌类型 + 周活跃度 Resid. Df Resid. Dev Df Deviance Pr(>Chi)1 906 274.92 2 913 278.71 -7 -3.7987 0.8026

    ROC曲线进行模型评估,找出训练集最优阈值

    说明:训练集最优阈值是0.844,TPR=0.878,FPR=1,AUC=0.980

    > pre_logistic_train<-predict(step_logistic,train_data,type="response")> library(pROC)> fit_roc_train<-roc(train_data$是否流失,pre_logistic_train)> plot(fit_roc_train,print.auc=TRUE,auc.polygon=TRUE,max.auc.polygon=TRUE,auc.polygon.col="skyblue",print.thres=TRUE)> ##说明:最优阈值是0.844,TPR=0.878,FPR=1,AUC=0.980> pre_logistic_train=ifelse(pre_logistic_train>0.844,1,0)

    ROC曲线进行模型评估,找出测试集最优阈值

    说明:测试集最优阈值是0.779,TPR=0.898,FPR=1,AUC=0.981

    > pre_logistic_test<-predict(step_logistic,test_data,type="response")> library(pROC)> fit_roc_test<-roc(test_data$是否流失,pre_logistic_test)> plot(fit_roc_test,print.auc=TRUE,auc.polygon=TRUE,max.auc.polygon=TRUE,auc.polygon.col="skyblue",print.thres=TRUE)> pre_logistic_test=ifelse(pre_logistic_test>0.779,1,0)

    ##所有模型训练集及测试集预测结果比较

    说明:各模型的不管是train_data还是test_data,Accuracy都在90%以上,效果非常好。训练集中,随机森林的预测效果竟达到100%,其中:

    c5.0:train-test=0.935-0.923=0.012

    randomForest:train-test=1-0.921=0.079

    nnet:train-test=0.923-0.921=0.02

    logistic:train-test=0.905-0.921=-0.016

    前三个的训练集效果均好与测试集,最后训练集效果反而小于测试集,但是除了随机森林前后预测效果差距比较大之外,其余的差距并不大。需要考虑随机森林是否过拟合。

    > name<-c("t_c5.0","t_randomForest","t_nnet","t_logistic")> test_table=train_table<-list()> compare_test=compare_train<-as.data.frame(matrix(rep(0,20),nrow = 4))> rownames(compare_test)=rownames(compare_train)<-name> colnames(compare_test)=colnames(compare_train)<-c("Accuracy","Kappa","Sensitivity","Specificity","Precision")>for(iin1:4){+ t_train<-confusionMatrix(switch(i,pre_c5.0_train,pre_randomForest_train,pre_nnet_train,pre_logistic_train),train_data$是否流失)+ t_test<-confusionMatrix(switch(i,pre_c5.0_test,pre_randomForest_test,pre_nnet_test,pre_logistic_test),test_data$是否流失)+ compare_train[i,]<-round((t(c(t_train$overall[1:2],t_train$byClass[c(1,2,5)]))),3)+ compare_test[i,]<-round((t(c(t_test$overall[1:2],t_test$byClass[c(1,2,5)]))),3)+ train_table[[i]]<-t_train$table+ test_table[[i]]<-t_test$table+ }> compare_train;compare_test AccuracyKappaSensitivity Specificity Precisiont_c5.0 0.935 0.817 0.897 0.945 0.824t_randomForest 1.000 1.000 1.000 1.000 1.000t_nnet 0.923 0.767 0.770 0.966 0.867t_logistic 0.905 0.762 1.000 0.878 0.701 AccuracyKappaSensitivity Specificity Precisiont_c5.0 0.923 0.782 0.851 0.944 0.813t_randomForest 0.921 0.776 0.851 0.941 0.804t_nnet 0.921 0.758 0.747 0.970 0.878t_logistic 0.921 0.797 1.000 0.898 0.737> names(train_table)=names(test_table)<-name> train_table;test_table$t_c5.0 ReferencePrediction 0 1 0 183 39 1 21 674$t_randomForestReferencePrediction 0 1 0 204 0 1 0 713$t_nnetReferencePrediction 0 1 0 157 24 1 47 689$t_logisticReferencePrediction 0 1 0 204 87 1 0 626$t_c5.0 ReferencePrediction 0 1 0 74 17 1 13 288$t_randomForestReferencePrediction 0 1 0 74 18 1 13 287$t_nnetReferencePrediction 0 1 0 65 9 1 22 296$t_logisticReferencePrediction 0 1 0 87 31 1 0 274

    #随机森林过拟合诊断(以下均为谢老师书中的R代码)

    随机森林默认决策树数目为500,接着分别计算不同数目下的误差率。

    >n=500>nerr_train=nerr_test<-rep(0,n)>for(iin1:n){+ fit<-randomForest(是否流失~.,data=train_data,mtry=6,ntree=i)+ train<-predict(fit,train_data,type="class")+ test<-predict(fit,test_data,type="class")+ nerr_train[i]<-sum(train_data$是否流失!=train)/nrow(train_data)+ nerr_test[i]<-sum(test_data$是否流失!=test)/nrow(test_data)+ }> plot(1:n,nerr_train,type ="l",ylim = c(min(nerr_train,nerr_test),max(nerr_train,nerr_test)),xlab="数的数目",ylab="误差率",lty=1,col=1)> lines(1:n,nerr_test,lty=2,col=2)> legend("right",lty=1:2,col=1:2,legend =c("训练集","测试集"),bty="n",cex=0.8)

    说明:图形给出了随机森林的ntree取不同数值时,训练集与测试集的误差大小,随着取值不断增大,训练集误差在0处稳定,测试集误差波动幅度不断减小,在0.075左右上下波动。可见,随机森林对结果的预测并非过拟合。

    —————————

    转载请保留以下内容:

    本文作者:天善智能社区 人和六栋

    原文链接:https://ask.hellobi.com/blog/renhe6dong/9152

    天善学院svip正火爆报名中!包含Excel BI、Python3爬虫案例、Python机器学习、Python数据科学家、大数据体系、数据分析报告、数据分析师体系、深度学习、R语言案例共10套课程,其他课程只需五折即可,欢迎大家关注报名!详情可见:https://www.hellobi.com/svip

    相关文章

      网友评论

      • 363b76aa75c3:大佬,这个算法有什么作用,小白求学

      本文标题:游戏用户流失预测数据分析

      本文链接:https://www.haomeiwen.com/subject/plsvlxtx.html