基因组数据的重测序分析

作者: lizg | 来源:发表于2019-01-02 09:45 被阅读48次

    我通过查资料获得已知达松维尔拟诺卡氏菌亚种(cardiopsis dassonvillei subsp. dassonvillei)的基因组原始测序序列,我想知道这个亚种与达松维尔拟诺卡氏菌(Nocardiopsis dassonvillei )的基因组相比有哪些不同。

    1.需要的软件

    软件名:Aspera 版本号:3.6.2.117442
    软件名:sratoolkit 版本号:2.9.2
    软件名:FastQC 版本号:0.11.7
    软件名:Trimmomatic版本号:0.38
    软件名:bwa 版本号:0.7.17-r1188
    软件名:samtools 版本号:1.7
    软件名:Annovar 版本:$Date: 2017-07-17 01:16:48 -0400 (Mon, 17 Jul 2017) $

    2.数据下载

    达松维尔拟诺卡氏菌亚种(cardiopsis dassonvillei subsp. dassonvillei)的基因组:
    ftp://ftp.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR022/SRR022534/SRR022534.sra

    ~/.aspera/connect/bin/ascp -T -i /home/lizeguo/.aspera/connect/etc/asperaweb_id_dsa.openssh -k 1 -l 200m anonftp@ftp-private.ncbi.nlm.nih.gov:/sra/sra-instant/reads/ByRun/sra/SRR/SRR022/SRR022534/SRR022534.sra ./Seqs/
    

    达松维尔拟诺卡氏菌(Nocardiopsis dassonvillei )参考基因组序列:
    ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/877/055/GCA_001877055.1_ASM187705v1/GCA_001877055.1_ASM187705v1_genomic.fna.gz

    ~/.aspera/connect/bin/ascp -T -i /home/lizeguo/.aspera/connect/etc/asperaweb_id_dsa.openssh -k 1 -l 200m anonftp@ftp-private.ncbi.nlm.nih.gov:/genomes/all/GCA/001/877/055/GCA_001877055.1_ASM187705v1/GCA_001877055.1_ASM187705v1_genomic.fna.gz ~/Seqs/
    

    基因组gff文件

    cd ~/Seqs
    
    wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/877/055/GCA_001877055.1_ASM187705v1/GCA_001877055.1_ASM187705v1_genomic.gff.gz
    

    3.主要分析步骤和结果

    (一)序列与参考基因组的比对

    1.数据文件的格式转换
    在NCBI的SRA数据库检索序列号SRR022534查看测序数据类型为454的单末端测序


    2018-12-20 10-57-15屏幕截图.png
    fastq-dump SRR022534.sra
    
    2018-12-20 11-04-11屏幕截图.png

    2.质量评估

    mkdir fastqc_result
    
    fastqc SRR022534.fastq 
    
    mv *.zip *.html fastqc_result/
    
    2018-12-20 11-16-21屏幕截图.png

    3.测序数据的数据过滤

    mkdir trim_out
    
    java -jar ~/BioSofts/Trimmomatic-0.38/trimmomatic-0.38.jar SE -phred33 SRR022534.fastq ./trim_out/SRR011534_out.fastq.gz ILLUMINACLIP:/home/lizeguo/BioSofts/Trimmomatic-0.38/adapters/TruSeq2-PE.fa:2:30:10 SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:75
    
    2018-12-20 11-29-33屏幕截图.png

    4.建立参考基因组索引

    gunzip GCA_001877055.1_ASM187705v1_genomic.fna.gz
    
    bwa index GCA_001877055.1_ASM187705v1_genomic.fna
    
    2018-12-20 11-37-59屏幕截图.png

    5.测序数据比对到参考基因组得到sam文件

    bwa mem GCA_001877055.1_ASM187705v1_genomic.fna trim_out/SRR011534_out.fastq.gz >bwa_mem_SRR011534.sam
    

    6.sam文件转换为bam文件

    samtools faidx GCA_001877055.1_ASM187705v1_genomic.fna
    
    samtools view -bhS -t GCA_001877055.1_ASM187705v1_genomic.fna.fai -o bwa_mem_SRR011534.bam bwa_mem_SRR011534.sam 
    

    7.为bam文件排序

    samtools sort bwa_mem_SRR011534.bam -o bwa_mem_SRR011534.sorted.bam
    

    8.为bam文件建立索引

    samtools index bwa_mem_SRR011534.sorted.bam
    

    9.显示基因组比对情况

    samtools tview bwa_mem_SRR011534.sorted.bam GCA_001877055.1_ASM187705v1_genomic.fna
    
    reads比对情况

    10.测试参考基因组每个位点或一段区域的测序深度

    samtools depth bwa_mem_SRR011534.sorted.bam >>depth.txt
    
    less depth.txt 
    
    每个位点或区域的测序深度

    11.统计比对结果

    samtools flagstat bwa_mem_SRR011534.sorted.bam
    
    比对结果

    结果显示有458257个碱基,有441750个碱基匹配上了,占比96.40%.

    (二)变异位点的检测

    1.去除PCR重复

    samtools rmdup bwa_mem_SRR011534.sorted.bam bwa_mem_SRR011534_nopcr.bam
    

    2.生成bcf文件

    samtools mpileup -gf GCA_001877055.1_ASM187705v1_genomic.fna bwa_mem_SRR011534_nopcr.bam >bwa_mem_SRR011534.bcf
    

    3.基因变异检测,得到bwa_mem_SRR011534.snps.bcf文件

    bcftools call -vm bwa_mem_SRR011534.bcf -o bwa_mem_SRR011534.variants.bcf
    
    bcftools view -v snps,indels bwa_mem_SRR011534.variants.bcf > bwa_mem_SRR011534.snps.vcf
    
    less bwa_mem_SRR011534.snps.vcf
    
    2018-12-31 13-47-46屏幕截图.png

    4.变异位点的过滤

    bcftools filter -o bwa_mem_SRR011534.snps.filtered.vcf -i 'QUAL>20 &&DP>5' bwa_mem_SRR011534.snps.vcf
    

    (三)变异基因注释

    1.生成annovar输入文件

    convert2annovar.pl -format vcf4 bwa_mem_SRR011534.snps.vcf > bwa_mem_SRR011534.snps.avinput
    

    2.自定义注释数据库

    gunzip GCA_001877055.1_ASM187705v1_genomic.gff.gz
    

    2.1gff3文件转为GenePred文件

    wget http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/gff3ToGenePred
    
    chmod 777 gff3ToGenePred 
    
    ./gff3ToGenePred -useName GCA_001877055.1_ASM187705v1_genomic.gff 7055-genome_refGene.txt
    

    2.2修改GenePred文件

    cut -f 12 7055-genome_refGene.txt >column1.txt
    
    cut -f 2-15 7055-genome_refGene.txt >column_else.txt
    
    paste column1.txt column_else.txt >7055-genome_new_refGene.txt
    

    2.3为建立每个基因与编码序列对应文件

    retrieve_seq_from_fasta.pl -format refGene -seqfile GCA_001877055.1_ASM187705v1_genomic.fna -outfile 7055-genome_new_refGeneMrna.fa 7055-genome_new_refGene.txt
    

    2.4拷贝数据库文件到annovar安装目录humandb文件夹

    cp 7055-genome_new_refGene* ~/BioSofts/annovar/humandb/
    

    3.注释变异基因位点,生成avinput.variant_function和avinput.exonic_variant_function后缀的两个结果文件

    annotate_variation.pl --geneanno --dbtype refGene --buildver 7055-genome_new  bwa_mem_SRR011534.snps.avinput ~/BioSofts/annovar/humandb/
    
    2018-12-31 15-13-41屏幕截图.png

    4.查看结果

    less bwa_mem_SRR011534.snps.avinput.variant_function
    
    2018-12-31 15-15-49屏幕截图.png
    less bwa_mem_SRR011534.snps.avinput.exonic_variant_function
    
    2018-12-31 15-15-49屏幕截图.png

    相关文章

      网友评论

        本文标题:基因组数据的重测序分析

        本文链接:https://www.haomeiwen.com/subject/pziekqtx.html