参考生信技能树:
pyscenic的转录因子分析结果展示之5种可视化、
pyscenic的转录因子分析结果展示之各个单细胞亚群特异性激活转录因子
上一篇见:
pySCENIC的转录因子分析及数据可视化(一)
下一篇见:
pySCENIC的转录因子分析及数据可视化(三)
1. 依赖包安装
## SCENIC需要一些依赖包,先安装好
BiocManager::install(c("AUCell", "RcisTarget"))
BiocManager::install(c("GENIE3"))
BiocManager::install(c("zoo", "mixtools", "rbokeh"))
BiocManager::install(c("DT", "NMF", "pheatmap", "R2HTML", "Rtsne"))
BiocManager::install(c("doMC", "doRNG"))
devtools::install_github("aertslab/SCopeLoomR", build_vignettes = TRUE)
devtools::install_github("aertslab/SCENIC")
网上很多说SCENIC很难安装,还好我这抄作业成功了。
library(SCENIC)
packageVersion("SCENIC")
#[1] ‘1.2.4’
2. 提取 out_SCENIC.loom 信息
##可视化
rm(list=ls())
library(Seurat)
library(SCopeLoomR)
library(AUCell)
library(SCENIC)
library(dplyr)
library(KernSmooth)
library(RColorBrewer)
library(plotly)
library(BiocParallel)
library(grid)
library(ComplexHeatmap)
library(data.table)
library(scRNAseq)
## 提取 out_SCENIC.loom 信息
#inputDir='./outputs/'
#scenicLoomPath=file.path(inputDir,'out_SCENIC.loom')
library(SCENIC)
loom <- open_loom('out_SCENIC.loom')
regulons_incidMat <- get_regulons(loom, column.attr.name="Regulons")
regulons_incidMat[1:4,1:4]
regulons <- regulonsToGeneLists(regulons_incidMat)
regulonAUC <- get_regulons_AUC(loom,column.attr.name='RegulonsAUC')
regulonAucThresholds <- get_regulon_thresholds(loom)
tail(regulonAucThresholds[order(as.numeric(names(regulonAucThresholds)))])
embeddings <- get_embeddings(loom)
close_loom(loom)
rownames(regulonAUC)
names(regulons)
3. 加载SeuratData
library(SeuratData) #加载seurat数据集
data("pbmc3k")
sce <- pbmc3k.final
table(sce$seurat_clusters)
table(Idents(sce))
sce$celltype = Idents(sce)
library(ggplot2)
genes_to_check = c('PTPRC', 'CD3D', 'CD3E', 'CD4','CD8A',
'CD19', 'CD79A', 'MS4A1' ,
'IGHG1', 'MZB1', 'SDC1',
'CD68', 'CD163', 'CD14',
'TPSAB1' , 'TPSB2', # mast cells,
'RCVRN','FPR1' , 'ITGAM' ,
'C1QA', 'C1QB', # mac
'S100A9', 'S100A8', 'MMP19',# monocyte
'FCGR3A',
'LAMP3', 'IDO1','IDO2',## DC3
'CD1E','CD1C', # DC2
'KLRB1','NCR1', # NK
'FGF7','MME', 'ACTA2', ## fibo
'DCN', 'LUM', 'GSN' , ## mouse PDAC fibo
'MKI67' , 'TOP2A',
'PECAM1', 'VWF', ## endo
'EPCAM' , 'KRT19', 'PROM1', 'ALDH1A1' )
library(stringr)
genes_to_check=str_to_upper(genes_to_check)
genes_to_check
p <- DotPlot(sce , features = unique(genes_to_check),
assay='RNA' ) + coord_flip() + theme(axis.text.x=element_text(angle=45,hjust = 1))
p
ggsave('check_last_markers.pdf',height = 11,width = 11)
DimPlot(sce,reduction = "umap",label=T )
sce$sub_celltype = sce$celltype
DimPlot(sce,reduction = "umap",label=T,group.by = "sub_celltype" )
ggsave('umap-by-sub_celltype.pdf')
Idents(sce) <- sce$sub_celltype
sce <- FindNeighbors(sce, dims = 1:15)
sce <- FindClusters(sce, resolution = 0.8)
table(sce@meta.data$RNA_snn_res.0.8)
DimPlot(sce,reduction = "umap",label=T )
ggsave('umap-by-sub_RNA_snn_res.0.8.pdf')
4. 四种可视化
sub_regulonAUC <- regulonAUC[,match(colnames(sce),colnames(regulonAUC))]
dim(sub_regulonAUC)
sce
#确认是否一致
identical(colnames(sub_regulonAUC), colnames(sce))
#[1] TRUE
cellClusters <- data.frame(row.names = colnames(sce),
seurat_clusters = as.character(sce$seurat_clusters))
cellTypes <- data.frame(row.names = colnames(sce),
celltype = sce$sub_celltype)
head(cellTypes)
head(cellClusters)
sub_regulonAUC[1:4,1:4]
save(sub_regulonAUC,cellTypes,cellClusters,sce,
file = 'for_rss_and_visual.Rdata')
B细胞有两个非常出名的转录因子,TCF4(+) 以及NR2C1(+),接下来就可以对这两个进行简单的可视化。首先我们需要把这两个转录因子活性信息 添加到降维聚类分群后的的seurat对象里面。
#尴尬的是TCF4(+)我这个数据里面没有,换了个PAX5(+)和REL(+)
regulonsToPlot = c('PAX5(+)','REL(+)')
regulonsToPlot
sce@meta.data = cbind(sce@meta.data ,t(assay( sub_regulonAUC[regulonsToPlot,])))
Idents(sce) <- sce$sub_celltype
table(Idents(sce))
DotPlot(sce, features = unique(regulonsToPlot)) + RotatedAxis()
RidgePlot(sce, features = regulonsToPlot , ncol = 1)
VlnPlot(sce, features = regulonsToPlot,pt.size = 0 )
FeaturePlot(sce, features = regulonsToPlot )
可以看到b细胞有两个非常出名的转录因子,TCF4(+) 以及NR2C1(+),确实是在b细胞比较独特的高。
image.png
image.png
image.png
image.png
下一步将进行亚群特异性转录因子分析及可视化。
网友评论