Tensorflow(7)

作者: Thinkando | 来源:发表于2018-04-10 21:53 被阅读52次

    卷积神经网络

    1 传统神经网络存在的问题
    1. 权值太多,计算量太大
    2. 需要大量样本进行训练(样本的大小,最好是权值的5-30倍)
    2 引入卷积神经网络
    2.1卷积层
    image.png 卷积.gif
    2.2 池化
    image.png
    2.3 SAME PADDING&VALID PADDING
    • 对于卷积


      image.png
    • 对于池化


      image.png
    3 代码实现
    # coding: utf-8
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    # 每个批次的大小
    batch_size = 100
    # 计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    
    # 初始化权值
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)  # 生成一个截断的正态分布
        return tf.Variable(initial)
    
    
    # 初始化偏置
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    # 卷积层
    def conv2d(x, W):
        # x input tensor of shape `[batch, in_height, in_width, in_channels]` 通道数,黑白为1,彩色为3
        # W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
        # `strides[0] = strides[3] = 1`. strides[1]代表x方向的步长,strides[2]代表y方向的步长
        # padding: A `string` from: `"SAME", "VALID"` same会补0,valid不会补0
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    # 池化层
    def max_pool_2x2(x):
        # ksize [1,x,y,1] 窗口大小
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    # 改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]`
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    # 初始化第一个卷积层的权值和偏置
    W_conv1 = weight_variable([5, 5, 1, 32])  # 5*5的采样窗口,32个卷积核从1个平面抽取特征
    b_conv1 = bias_variable([32])  # 每一个卷积核一个偏置值
    
    # 把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)  # 进行max-pooling
    
    # 初始化第二个卷积层的权值和偏置
    W_conv2 = weight_variable([5, 5, 32, 64])  # 5*5的采样窗口,64个卷积核从32个平面抽取特征
    b_conv2 = bias_variable([64])  # 每一个卷积核一个偏置值
    
    # 把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)  # 进行max-pooling
    
    # 28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
    # 第二次卷积后为14*14,第二次池化后变为了7*7
    # 进过上面操作后得到64张7*7的平面
    
    # 初始化第一个全连接层的权值
    W_fc1 = weight_variable([7 * 7 * 64, 1024])  # 上一层有7*7*64个神经元,全连接层有1024个神经元
    b_fc1 = bias_variable([1024])  # 1024个节点
    
    # 把池化层2的输出扁平化为1维
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    # 求第一个全连接层的输出
    wx_plus_b1 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1
    h_fc1 = tf.nn.relu(wx_plus_b1)
    
    # keep_prob用来表示神经元的输出概率
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    # 初始化第二个全连接层
    W_fc2 = weight_variable([1024, 10]) # 10代表有10个分类
    b_fc2 = bias_variable([10])
    
    # 计算输出
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)
    
    # 交叉熵代价函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    
    # 使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    # 结果存放在一个布尔列表中
    correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))  # argmax返回一维张量中最大的值所在的位置
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # 合并所有的summary
    merged = tf.summary.merge_all()
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch in range(21):
            for batch in range(n_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.7})
    
            acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
            print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
    
    
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    Iter 0, Testing Accuracy= 0.8593
    Iter 1, Testing Accuracy= 0.9596
    Iter 2, Testing Accuracy= 0.9733
    Iter 3, Testing Accuracy= 0.9801
    Iter 4, Testing Accuracy= 0.9828
    Iter 5, Testing Accuracy= 0.9846
    Iter 6, Testing Accuracy= 0.9868
    Iter 7, Testing Accuracy= 0.9875
    Iter 8, Testing Accuracy= 0.9882
    Iter 9, Testing Accuracy= 0.9903
    Iter 10, Testing Accuracy= 0.9885
    Iter 11, Testing Accuracy= 0.9892
    Iter 12, Testing Accuracy= 0.9911
    Iter 13, Testing Accuracy= 0.991
    Iter 14, Testing Accuracy= 0.9902
    Iter 15, Testing Accuracy= 0.9918
    Iter 16, Testing Accuracy= 0.9925
    Iter 17, Testing Accuracy= 0.991
    Iter 18, Testing Accuracy= 0.9904
    Iter 19, Testing Accuracy= 0.9916
    Iter 20, Testing Accuracy= 0.9907
    

    4. tensorboard 实现

    
    # coding: utf-8
    
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
    
    #每个批次的大小
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #参数概要
    def variable_summaries(var):
        with tf.name_scope('summaries'):
            mean = tf.reduce_mean(var)
            tf.summary.scalar('mean', mean)#平均值
            with tf.name_scope('stddev'):
                stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
            tf.summary.scalar('stddev', stddev)#标准差
            tf.summary.scalar('max', tf.reduce_max(var))#最大值
            tf.summary.scalar('min', tf.reduce_min(var))#最小值
            tf.summary.histogram('histogram', var)#直方图
    
    #初始化权值
    def weight_variable(shape,name):
        initial = tf.truncated_normal(shape,stddev=0.1)#生成一个截断的正态分布
        return tf.Variable(initial,name=name)
    
    #初始化偏置
    def bias_variable(shape,name):
        initial = tf.constant(0.1,shape=shape)
        return tf.Variable(initial,name=name)
    
    #卷积层
    def conv2d(x,W):
        #x input tensor of shape `[batch, in_height, in_width, in_channels]`
        #W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
        #`strides[0] = strides[3] = 1`. strides[1]代表x方向的步长,strides[2]代表y方向的步长
        #padding: A `string` from: `"SAME", "VALID"`
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    
    #池化层
    def max_pool_2x2(x):
        #ksize [1,x,y,1]
        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    #命名空间
    with tf.name_scope('input'):
        #定义两个placeholder
        x = tf.placeholder(tf.float32,[None,784],name='x-input')
        y = tf.placeholder(tf.float32,[None,10],name='y-input')
        with tf.name_scope('x_image'):
            #改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]`
            x_image = tf.reshape(x,[-1,28,28,1],name='x_image')
    
    
    with tf.name_scope('Conv1'):
        #初始化第一个卷积层的权值和偏置
        with tf.name_scope('W_conv1'):
            W_conv1 = weight_variable([5,5,1,32],name='W_conv1')#5*5的采样窗口,32个卷积核从1个平面抽取特征
        with tf.name_scope('b_conv1'):  
            b_conv1 = bias_variable([32],name='b_conv1')#每一个卷积核一个偏置值
    
        #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
        with tf.name_scope('conv2d_1'):
            conv2d_1 = conv2d(x_image,W_conv1) + b_conv1
        with tf.name_scope('relu'):
            h_conv1 = tf.nn.relu(conv2d_1)
        with tf.name_scope('h_pool1'):
            h_pool1 = max_pool_2x2(h_conv1)#进行max-pooling
    
    with tf.name_scope('Conv2'):
        #初始化第二个卷积层的权值和偏置
        with tf.name_scope('W_conv2'):
            W_conv2 = weight_variable([5,5,32,64],name='W_conv2')#5*5的采样窗口,64个卷积核从32个平面抽取特征
        with tf.name_scope('b_conv2'):  
            b_conv2 = bias_variable([64],name='b_conv2')#每一个卷积核一个偏置值
    
        #把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
        with tf.name_scope('conv2d_2'):
            conv2d_2 = conv2d(h_pool1,W_conv2) + b_conv2
        with tf.name_scope('relu'):
            h_conv2 = tf.nn.relu(conv2d_2)
        with tf.name_scope('h_pool2'):
            h_pool2 = max_pool_2x2(h_conv2)#进行max-pooling
    
    #28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
    #第二次卷积后为14*14,第二次池化后变为了7*7
    #进过上面操作后得到64张7*7的平面
    
    with tf.name_scope('fc1'):
        #初始化第一个全连接层的权值
        with tf.name_scope('W_fc1'):
            W_fc1 = weight_variable([7*7*64,1024],name='W_fc1')#上一场有7*7*64个神经元,全连接层有1024个神经元
        with tf.name_scope('b_fc1'):
            b_fc1 = bias_variable([1024],name='b_fc1')#1024个节点
    
        #把池化层2的输出扁平化为1维
        with tf.name_scope('h_pool2_flat'):
            h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64],name='h_pool2_flat')
        #求第一个全连接层的输出
        with tf.name_scope('wx_plus_b1'):
            wx_plus_b1 = tf.matmul(h_pool2_flat,W_fc1) + b_fc1
        with tf.name_scope('relu'):
            h_fc1 = tf.nn.relu(wx_plus_b1)
    
        #keep_prob用来表示神经元的输出概率
        with tf.name_scope('keep_prob'):
            keep_prob = tf.placeholder(tf.float32,name='keep_prob')
        with tf.name_scope('h_fc1_drop'):
            h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob,name='h_fc1_drop')
    
    with tf.name_scope('fc2'):
        #初始化第二个全连接层
        with tf.name_scope('W_fc2'):
            W_fc2 = weight_variable([1024,10],name='W_fc2')
        with tf.name_scope('b_fc2'):    
            b_fc2 = bias_variable([10],name='b_fc2')
        with tf.name_scope('wx_plus_b2'):
            wx_plus_b2 = tf.matmul(h_fc1_drop,W_fc2) + b_fc2
        with tf.name_scope('softmax'):
            #计算输出
            prediction = tf.nn.softmax(wx_plus_b2)
    
    #交叉熵代价函数
    with tf.name_scope('cross_entropy'):
        cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction),name='cross_entropy')
        tf.summary.scalar('cross_entropy',cross_entropy)
        
    #使用AdamOptimizer进行优化
    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    #求准确率
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            #结果存放在一个布尔列表中
            correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax返回一维张量中最大的值所在的位置
        with tf.name_scope('accuracy'):
            #求准确率
            accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
            tf.summary.scalar('accuracy',accuracy)
            
    #合并所有的summary
    merged = tf.summary.merge_all()
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        train_writer = tf.summary.FileWriter('logs/train',sess.graph)
        test_writer = tf.summary.FileWriter('logs/test',sess.graph)
        for i in range(1001):
            #训练模型
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5})
            #记录训练集计算的参数
            summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
            train_writer.add_summary(summary,i)
            #记录测试集计算的参数
            batch_xs,batch_ys =  mnist.test.next_batch(batch_size)
            summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
            test_writer.add_summary(summary,i)
        
            if i%100==0:
                test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
                train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images[:10000],y:mnist.train.labels[:10000],keep_prob:1.0})
                print ("Iter " + str(i) + ", Testing Accuracy= " + str(test_acc) + ", Training Accuracy= " + str(train_acc))
    
    
    
    Iter 0, Testing Accuracy= 0.0705, Training Accuracy= 0.0703
    Iter 100, Testing Accuracy= 0.6339, Training Accuracy= 0.6361
    Iter 200, Testing Accuracy= 0.6652, Training Accuracy= 0.6682
    Iter 300, Testing Accuracy= 0.7866, Training Accuracy= 0.7863
    Iter 400, Testing Accuracy= 0.9303, Training Accuracy= 0.9243
    Iter 500, Testing Accuracy= 0.9437, Training Accuracy= 0.9389
    Iter 600, Testing Accuracy= 0.9479, Training Accuracy= 0.9479
    Iter 700, Testing Accuracy= 0.956, Training Accuracy= 0.9564
    Iter 800, Testing Accuracy= 0.9619, Training Accuracy= 0.9609
    Iter 900, Testing Accuracy= 0.9632, Training Accuracy= 0.9633
    Iter 1000, Testing Accuracy= 0.9654, Training Accuracy= 0.9644
    
    • 终端输入
    tensorboard --logdir=/Users/chengkai/Desktop/file/learn/project/tensorflow/logs
    
    • 程序运行完会生成两个文件在logs文件夹下,所以之后在tensorboards会有两条线


      image.png
      image.png
      image.png

    相关文章

      网友评论

        本文标题:Tensorflow(7)

        本文链接:https://www.haomeiwen.com/subject/rpcohftx.html