深度剖析ConcurrentHashMap

作者: winwill2012 | 来源:发表于2015-09-11 10:34 被阅读667次

    概述

    还记得大学快毕业的时候要准备找工作了,然后就看各种面试相关的书籍,还记得很多面试书中都说到:

    HashMap是非线程安全的,HashTable是线程安全的。

    那个时候没怎么写Java代码,所以根本就没有听说过ConcurrentHashMap,只知道面试的时候就记住这句话就行了...至于为什么是线程安全的,内部怎么实现的,通通不了解。

    今天我们将深入剖析一个比HashTable性能更优的线程安全的Map类,它就是ConcurrentHashMap,本文基于Java 7的源码做剖析

    ConcurrentHashMap的目的

    多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。虽然已经有一个线程安全的HashTable,但是HashTable容器使用synchronized(他的get和put方法的实现代码如下)来保证线程安全,在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,访问其他同步方法的线程就可能会进入阻塞或者轮训状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

        public synchronized V get(Object key) {
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
                if ((e.hash == hash) && e.key.equals(key)) {
                    return (V)e.value;
                }
            }
            return null;
        }
        public synchronized V put(K key, V value) {
            // Make sure the value is not null
            if (value == null) {
                throw new NullPointerException();
            }
    
            // Makes sure the key is not already in the hashtable.
            Entry<?,?> tab[] = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;
            @SuppressWarnings("unchecked")
            Entry<K,V> entry = (Entry<K,V>)tab[index];
            for(; entry != null ; entry = entry.next) {
                if ((entry.hash == hash) && entry.key.equals(key)) {
                    V old = entry.value;
                    entry.value = value;
                    return old;
                }
            }
    
            addEntry(hash, key, value, index);
            return null;
        }
    

    在这么恶劣的环境下,ConcurrentHashMap应运而生。

    实现原理

    ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。如下图是ConcurrentHashMap的内部结构图:



    从图中可以看到,ConcurrentHashMap内部分为很多个Segment,每一个Segment拥有一把锁,然后每个Segment(继承ReentrantLock)下面包含很多个HashEntry列表数组。对于一个key,需要经过三次(为什么要hash三次下文会详细讲解)hash操作,才能最终定位这个元素的位置,这三次hash分别为:

    1. 对于一个key,先进行一次hash操作,得到hash值h1,也即h1 = hash1(key);
    2. 将得到的h1的高几位进行第二次hash,得到hash值h2,也即h2 = hash2(h1高几位),通过h2能够确定该元素的放在哪个Segment;
    3. 将得到的h1进行第三次hash,得到hash值h3,也即h3 = hash3(h1),通过h3能够确定该元素放置在哪个HashEntry。

    初始化

    先看看ConcurrentHashMap的初始化做了哪些事情,构造函数的源码如下:

    public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (concurrencyLevel > MAX_SEGMENTS)
                concurrencyLevel = MAX_SEGMENTS;
            // Find power-of-two sizes best matching arguments
            int sshift = 0;
            int ssize = 1;
            while (ssize < concurrencyLevel) {
                ++sshift;
                ssize <<= 1;
            }
            this.segmentShift = 32 - sshift;
            this.segmentMask = ssize - 1;
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            int c = initialCapacity / ssize;
            if (c * ssize < initialCapacity)
                ++c;
            int cap = MIN_SEGMENT_TABLE_CAPACITY;
            while (cap < c)
                cap <<= 1;
            // create segments and segments[0]
            Segment<K,V> s0 =
                new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                                 (HashEntry<K,V>[])new HashEntry[cap]);
            Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
            UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
            this.segments = ss;
        }
    

    传入的参数有initialCapacity,loadFactor,concurrencyLevel这三个。

    • initialCapacity表示新创建的这个ConcurrentHashMap的初始容量,也就是上面的结构图中的Entry数量。默认值为static final int DEFAULT_INITIAL_CAPACITY = 16;
    • loadFactor表示负载因子,就是当ConcurrentHashMap中的元素个数大于loadFactor * 最大容量时就需要rehash,扩容。默认值为static final float DEFAULT_LOAD_FACTOR = 0.75f;
    • concurrencyLevel表示并发级别,这个值用来确定Segment的个数,Segment的个数是大于等于concurrencyLevel的第一个2的n次方的数。比如,如果concurrencyLevel为12,13,14,15,16这些数,则Segment的数目为16(2的4次方)。默认值为static final int DEFAULT_CONCURRENCY_LEVEL = 16;。理想情况下ConcurrentHashMap的真正的并发访问量能够达到concurrencyLevel,因为有concurrencyLevel个Segment,假如有concurrencyLevel个线程需要访问Map,并且需要访问的数据都恰好分别落在不同的Segment中,则这些线程能够无竞争地自由访问(因为他们不需要竞争同一把锁),达到同时访问的效果。这也是为什么这个参数起名为“并发级别”的原因。

    初始化的一些动作:

    1. 验证参数的合法性,如果不合法,直接抛出异常。
    2. concurrencyLevel也就是Segment的个数不能超过规定的最大Segment的个数,默认值为static final int MAX_SEGMENTS = 1 << 16;,如果超过这个值,设置为这个值。
    3. 然后使用循环找到大于等于concurrencyLevel的第一个2的n次方的数ssize,这个数就是Segment数组的大小,并记录一共向左按位移动的次数sshift,并令segmentShift = 32 - sshift,并且segmentMask的值等于ssize - 1,segmentMask的各个二进制位都为1,目的是之后可以通过key的hash值与这个值做&运算确定Segment的索引。
    4. 检查给的容量值是否大于允许的最大容量值,如果大于该值,设置为该值。最大容量值为static final int MAXIMUM_CAPACITY = 1 << 30;
    5. 然后计算每个Segment平均应该放置多少个元素,这个值c是向上取整的值。比如初始容量为15,Segment个数为4,则每个Segment平均需要放置4个元素。
    6. 最后创建一个Segment实例,将其当做Segment数组的第一个元素。

    put操作

    put操作的源码如下:

      public V put(K key, V value) {
            Segment<K,V> s;
            if (value == null)
                throw new NullPointerException();
            int hash = hash(key);
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                s = ensureSegment(j);
            return s.put(key, hash, value, false);
        }
    

    操作步骤如下:

    1. 判断value是否为null,如果为null,直接抛出异常。
    2. key通过一次hash运算得到一个hash值。(这个hash运算下文详说)
    3. 将得到hash值向右按位移动segmentShift位,然后再与segmentMask做&运算得到segment的索引j。
      在初始化的时候我们说过segmentShift的值等于32-sshift,例如concurrencyLevel等于16,则sshift等于4,则segmentShift为28。hash值是一个32位的整数,将其向右移动28位就变成这个样子:
      0000 0000 0000 0000 0000 0000 0000 xxxx,然后再用这个值与segmentMask做&运算,也就是取最后四位的值。这个值确定Segment的索引。
    4. 使用Unsafe的方式从Segment数组中获取该索引对应的Segment对象。
    5. 向这个Segment对象中put值,这个put操作也基本是一样的步骤(通过&运算获取HashEntry的索引,然后set)。

    get操作

    get操作的源码如下:

    public V get(Object key) {
            Segment<K,V> s; // manually integrate access methods to reduce overhead
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
                for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                         (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                     e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                        return e.value;
                }
            }
            return null;
        }
    

    操作步骤为:

    1. 和put操作一样,先通过key进行两次hash确定应该去哪个Segment中取数据。
    2. 使用Unsafe获取对应的Segment,然后再进行一次&运算得到HashEntry链表的位置,然后从链表头开始遍历整个链表(因为Hash可能会有碰撞,所以用一个链表保存),如果找到对应的key,则返回对应的value值,如果链表遍历完都没有找到对应的key,则说明Map中不包含该key,返回null。

    size操作

    size操作与put和get操作最大的区别在于,size操作需要遍历所有的Segment才能算出整个Map的大小,而put和get都只关心一个Segment。假设我们当前遍历的Segment为SA,那么在遍历SA过程中其他的Segment比如SB可能会被修改,于是这一次运算出来的size值可能并不是Map当前的真正大小。所以一个比较简单的办法就是计算Map大小的时候所有的Segment都Lock住,不能更新(包含put,remove等等)数据,计算完之后再Unlock。这是普通人能够想到的方案,但是牛逼的作者还有一个更好的Idea:先给3次机会,不lock所有的Segment,遍历所有Segment,累加各个Segment的大小得到整个Map的大小,如果某相邻的两次计算获取的所有Segment的更新的次数(每个Segment都有一个modCount变量,这个变量在Segment中的Entry被修改时会加一,通过这个值可以得到每个Segment的更新操作的次数)是一样的,说明计算过程中没有更新操作,则直接返回这个值。如果这三次不加锁的计算过程中Map的更新次数有变化,则之后的计算先对所有的Segment加锁,再遍历所有Segment计算Map大小,最后再解锁所有Segment。源代码如下:

    public int size() {
            // Try a few times to get accurate count. On failure due to
            // continuous async changes in table, resort to locking.
            final Segment<K,V>[] segments = this.segments;
            int size;
            boolean overflow; // true if size overflows 32 bits
            long sum;         // sum of modCounts
            long last = 0L;   // previous sum
            int retries = -1; // first iteration isn't retry
            try {
                for (;;) {
                    if (retries++ == RETRIES_BEFORE_LOCK) {
                        for (int j = 0; j < segments.length; ++j)
                            ensureSegment(j).lock(); // force creation
                    }
                    sum = 0L;
                    size = 0;
                    overflow = false;
                    for (int j = 0; j < segments.length; ++j) {
                        Segment<K,V> seg = segmentAt(segments, j);
                        if (seg != null) {
                            sum += seg.modCount;
                            int c = seg.count;
                            if (c < 0 || (size += c) < 0)
                                overflow = true;
                        }
                    }
                    if (sum == last)
                        break;
                    last = sum;
                }
            } finally {
                if (retries > RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        segmentAt(segments, j).unlock();
                }
            }
            return overflow ? Integer.MAX_VALUE : size;
        }
    

    举个例子:

    一个Map有4个Segment,标记为S1,S2,S3,S4,现在我们要获取Map的size。计算过程是这样的:第一次计算,不对S1,S2,S3,S4加锁,遍历所有的Segment,假设每个Segment的大小分别为1,2,3,4,更新操作次数分别为:2,2,3,1,则这次计算可以得到Map的总大小为1+2+3+4=10,总共更新操作次数为2+2+3+1=8;第二次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设这次每个Segment的大小变成了2,2,3,4,更新次数分别为3,2,3,1,因为两次计算得到的Map更新次数不一致(第一次是8,第二次是9)则可以断定这段时间Map数据被更新,则此时应该再试一次;第三次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设每个Segment的更新操作次数还是为3,2,3,1,则因为第二次计算和第三次计算得到的Map的更新操作的次数是一致的,就能说明第二次计算和第三次计算这段时间内Map数据没有被更新,此时可以直接返回第三次计算得到的Map的大小。最坏的情况:第三次计算得到的数据更新次数和第二次也不一样,则只能先对所有Segment加锁再计算最后解锁。

    containsValue操作

    containsValue操作采用了和size操作一样的想法,但是containsValue的源码我有有个疑问,不太明白:

    public boolean containsValue(Object value) {
            // Same idea as size()
            if (value == null)
                throw new NullPointerException();
            final Segment<K,V>[] segments = this.segments;
            boolean found = false;
            long last = 0;
            int retries = -1;
            try {
                outer: for (;;) {
                    if (retries++ == RETRIES_BEFORE_LOCK) {
                        for (int j = 0; j < segments.length; ++j)
                            ensureSegment(j).lock(); // force creation
                    }
                    long hashSum = 0L;
                    int sum = 0;
                    for (int j = 0; j < segments.length; ++j) {
                        HashEntry<K,V>[] tab;
                        Segment<K,V> seg = segmentAt(segments, j);
                        if (seg != null && (tab = seg.table) != null) {
                            for (int i = 0 ; i < tab.length; i++) {
                                HashEntry<K,V> e;
                                for (e = entryAt(tab, i); e != null; e = e.next) {
                                    V v = e.value;
                                    if (v != null && value.equals(v)) {
                                        found = true;
                                        break outer;
                                    }
                                }
                            }
                            sum += seg.modCount;
                        }
                    }
                    if (retries > 0 && sum == last)
                        break;
                    last = sum;
                }
            } finally {
                if (retries > RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        segmentAt(segments, j).unlock();
                }
            }
            return found;
        }
    

    为什么两次重试之间found值没有被重新赋值为false,这样的话只要有一次计算将found设置为true,以后就都一直为true了,如果有读者能搞清楚,请留言相告,感激不尽。

    关于hash

    大家一定还记得使用一个key定位Segment之前进行过一次hash操作吧?这次hash的作用是什么呢?看看hash的源代码:

    private int hash(Object k) {
            int h = hashSeed;
    
            if ((0 != h) && (k instanceof String)) {
                return sun.misc.Hashing.stringHash32((String) k);
            }
    
            h ^= k.hashCode();
    
            // Spread bits to regularize both segment and index locations,
            // using variant of single-word Wang/Jenkins hash.
            h += (h <<  15) ^ 0xffffcd7d;
            h ^= (h >>> 10);
            h += (h <<   3);
            h ^= (h >>>  6);
            h += (h <<   2) + (h << 14);
            return h ^ (h >>> 16);
        }
    

    源码中的注释是这样的:

    Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. This is critical because ConcurrentHashMap uses power-of-two length hash tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper bits.

    这里用到了Wang/Jenkins hash算法的变种,主要的目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。

    举个简单的例子:

    System.out.println(Integer.parseInt("0001111", 2) & 15);
    System.out.println(Integer.parseInt("0011111", 2) & 15);
    System.out.println(Integer.parseInt("0111111", 2) & 15);
    System.out.println(Integer.parseInt("1111111", 2) & 15);
    
    

    这些数字得到的hash值都是一样的,全是15,所以如果不进行第一次预hash,发生冲突的几率还是很大的,但是如果我们先把上例中的二进制数字使用hash()函数先进行一次预hash,得到的结果是这样的:

    0100|0111|0110|0111|1101|1010|0100|1110
    1111|0111|0100|0011|0000|0001|1011|1000
    0111|0111|0110|1001|0100|0110|0011|1110
    1000|0011|0000|0000|1100|1000|0001|1010

    上面这个例子引用自: InfoQ
    可以看到每一位的数据都散开了,并且ConcurrentHashMap中是使用预hash值的高位参与运算的。比如之前说的先将hash值向右按位移动28位,再与15做&运算,得到的结果都别为:4,15,7,8,没有冲突!

    注意事项

    • ConcurrentHashMap中的key和value值都不能为null。
    • ConcurrentHashMap的整个操作过程中大量使用了Unsafe类来获取Segment/HashEntry,这里Unsafe的主要作用是提供原子操作。Unsafe这个类比较恐怖,破坏力极强,一般场景不建议使用,如果有兴趣可以到这里做详细的了解Java中鲜为人知的特性
    • ConcurrentHashMap是线程安全的类并不能保证使用了ConcurrentHashMap的操作都是线程安全的!
    • 本文为作者个人理解,如果有误,请留言相告,感激不尽。
    • 转载请注明出处:http://qifuguang.me/2015/09/10/[Java并发包学习八]深度剖析ConcurrentHashMap
      如果你喜欢我的文章,请关注我的微信订阅号:“机智的程序猿”,更多精彩,尽在其中:

    相关文章

      网友评论

      • b46f7fb22173:containsValue中判断sum和last是否相等,只是为了在没找到这个值时,确认两次都没有找到,而不是因为其他线程对数据进行了改变
      • b46f7fb22173:你说containsValue操作和size思想差不多,其实不是,是你理解错了,所以才会认为found有问题。containsValue操作的思想并不是和size相似,size是至少通过两次计算并检验前后两次结果是否相等才能得到结果,而containsValue只需要判断成功就可返回,并不需要通过循环两次,判断两次结果是否一致。
      • 何知晓:contains那里没什么问题啊,找到了就跳出返回,没找到就继续找
      • LITTLEDREAM:size方法中(size + c) < 0這行代碼,實在是不懂,每個seg都可能放滿一個Integer.MAX的Array,那麼return int就沒有意義了啊,為啥不給long型呢???? 還有你說的那個問題,估計是該類的一個bug,確實有問題。以及,我怎麼還是看不明白get方法中的for循環的移位運算到底作何。rose_hong@foxmail.com求作者解釋解釋啊,本人Java菜鳥啊!

      本文标题:深度剖析ConcurrentHashMap

      本文链接:https://www.haomeiwen.com/subject/rvupcttx.html