英文文档本来就很清晰,但是需要一些时间来理解: http://qualimap.bioinfo.cipf.es/doc_html/analysis.html
测试数据也给的很全面: http://qualimap.bioinfo.cipf.es/doc_html/samples.html#counts-example-output
对外显子测序用qualimap
需要自己制作 mm10.exon.chr.bed
文件,制作方式如下:
wget ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS//archive/21/CCDS.20161208.txt
cat CCDS.20161208.txt |perl -alne '{/\[(.*?)\]/;next unless $1;$gene=$F[2];$exons=$1;$exons=~s/\s//g;$exons=~s/-/\t/g;print "$F[0]\t$_\t$gene" foreach split/,/,$exons;}'|sort -u |bedtools sort -i >mm10.exon
awk '{print $0"\t0\t+"}' mm10.exon >mm10.exon.bed
然后就可以运行 qualimap
## $1 for the config file: bam_path.txt
## $2 and $3 for submit jobs.
exon_bed='/home/jianmingzeng/annotation/CCDS/mouse/mm10.exon.chr.bed'
qualimap='/home/jianmingzeng/biosoft/Qualimap/qualimap_v2.2.1/qualimap'
cat $1 |while read id
do
echo $id
if((i%$2==$3))
then
$qualimap bamqc --java-mem-size=20G -gff $exon_bed -bam $id
fi
i=$((i+1))
done
可以看外显子的测序情况。
对转录组数据进行QC
这里其实应该是首推RSeQC这个软件,可惜那是个python的,而且运行超慢,还具耗费内存。所以不得已转为
示例报告: http://kokonech.github.io/qualimap/kidney_rnaseqqc/qualimapReport.html
## $1 for the config file: bam_path.txt
## $2 and $3 for submit jobs.
gtf='/home/jianmingzeng/reference/gtf/gencode/gencode.v25.annotation.gtf'
qualimap='/home/jianmingzeng/biosoft/Qualimap/qualimap_v2.2.1/qualimap'
cat $1 |while read id
do
file=$(basename $id )
sample=${file%%.*}
echo $sample
if((i%$2==$3))
then
$qualimap rnaseq --java-mem-size=20G -gtf $gtf -bam $id -pe -oc $sample
fi
i=$((i+1))
done
count qc
属于转录组数据质控的一部分,比如:6 samples in 2 conditions 的报告,这个时候的input数据是表达矩阵了:
- Global report
- Comparison of conditions
- Sample 01 (GlcN negative)
- Sample 02 (GlcN negative)
- Sample 03 (GlcN negative)
- Sample 04 (GlcN positive)
- Sample 05 (GlcN positive)
- Sample 06 (GlcN positive)
综合比较多个bam文件
示例报告:
网友评论