WGCNA构建共表达网络四

作者: 多啦A梦的时光机_648d | 来源:发表于2020-02-24 01:30 被阅读0次

    一:提取指定模块的基因名

    提取基因信息,进行下游分析包括GO/KEGG等功能数据库的注释。

    # Select module
    module = "turquoise";
    # Select module probes
    probes = colnames(datExpr) ## 我们例子里面的probe就是基因名
    inModule = (moduleColors==module);
    modProbes = probes[inModule];
    

    二:模块的导出

    主要模块里面的基因直接的相互作用关系信息可以导出到cytoscape,VisANT等网络可视化软件。

    # Recalculate topological overlap
    TOM = TOMsimilarityFromExpr(datExpr, power = sft$powerEstimate); 
    # Select module
    module = "turquoise";
    # Select module probes
    probes = colnames(datExpr) ## 我们例子里面的probe就是基因名
    inModule = (moduleColors==module);
    modProbes = probes[inModule]; 
    ## 也是提取指定模块的基因名
    # Select the corresponding Topological Overlap
    modTOM = TOM[inModule, inModule];
    dimnames(modTOM) = list(modProbes, modProbes)
    

    三:模块对应的基因关系矩阵

    1.首先是导出到VisANT

    vis = exportNetworkToVisANT(modTOM,
                                file = paste("VisANTInput-", module, ".txt", sep=""),
                                weighted = TRUE,
                                threshold = 0)
    

    2.然后是导出到cytoscape

    cyt = exportNetworkToCytoscape(
      modTOM,
      edgeFile = paste("CytoscapeInput-edges-", paste(module, collapse="-"), ".txt", sep=""),
      nodeFile = paste("CytoscapeInput-nodes-", paste(module, collapse="-"), ".txt", sep=""),
      weighted = TRUE,
      threshold = 0.02,
      nodeNames = modProbes, 
      nodeAttr = moduleColors[inModule]
    );
    

    四:模块内的分析—— 提取hub genes

    hub genes指模块中连通性(connectivity)较高的基因,如设定排名前30或前10%)。
    高连通性的Hub基因通常为调控因子(调控网络中处于偏上游的位置),而低连通性的基因通常为调控网络中偏下游的基因(例如,转运蛋白、催化酶等)。
    HubGene: |kME| >=阈值(0.8)

    4.1 计算连通性

    ### Intramodular connectivity, module membership, and screening for intramodular hub genes
    
    # (1) Intramodular connectivity
    
    # moduleColors <- labels2colors(net$colors)
    connet=abs(cor(datExpr,use="p"))^6
    Alldegrees1=intramodularConnectivity(connet, moduleColors)
    head(Alldegrees1)
    

    4.2 模块内的连通性与gene显著性的关系

    # (2) Relationship between gene significance and intramodular connectivity
    which.module="blue"
    EB= as.data.frame(datTraits[,1]); # change specific 
    names(EB) = "EB"
    GS1 = as.numeric(cor(EB,datExpr, use="p"))
    GeneSignificance=abs(GS1)
    colorlevels=unique(moduleColors)
    sizeGrWindow(9,6)
    par(mfrow=c(2,as.integer(0.5+length(colorlevels)/2)))
    par(mar = c(4,5,3,1))
    for (i in c(1:length(colorlevels)))
    {
      whichmodule=colorlevels[[i]];
      restrict1 = (moduleColors==whichmodule);
      verboseScatterplot(Alldegrees1$kWithin[restrict1],
                         GeneSignificance[restrict1], col=moduleColors[restrict1],
                         main=whichmodule,
                         xlab = "Connectivity", ylab = "Gene Significance", abline = TRUE)
    }
    
    结果

    4.3 计算模块内所有基因的连通性, 筛选hub genes

    abs(GS1)> .9 可以根据实际情况调整参数
    abs(datKME$MM.black)>.8 至少大于 >0.8

    ###(3) Generalizing intramodular connectivity for all genes on the array
    datKME=signedKME(datExpr, MEs, outputColumnName="MM.")
    # Display the first few rows of the data frame
    head(datKME)
    ##Finding genes with high gene significance and high intramodular connectivity in
    # interesting modules
    # abs(GS1)> .9 可以根据实际情况调整参数
    # abs(datKME$MM.black)>.8 至少大于 >0.8
    FilterGenes= abs(GS1)> .9 & abs(datKME$MM.black)>.8
    table(FilterGenes)
    

    4.4 another plot for realtionship between module eigengenes

    displaying module heatmap and the eigengene

    sizeGrWindow(8,7);
    which.module="blue"
    ME=MEs[, paste("ME",which.module, sep="")]
    par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2))
    plotMat(t(scale(datExpr[,moduleColors==which.module ]) ),
            nrgcols=30,rlabels=F,rcols=which.module,
            main=which.module, cex.main=2)
    par(mar=c(5, 4.2, 0, 0.7))
    barplot(ME, col=which.module, main="", cex.main=2,
            ylab="eigengene expression",xlab="MPP")
    
    结果

    相关文章

      网友评论

        本文标题:WGCNA构建共表达网络四

        本文链接:https://www.haomeiwen.com/subject/tlkcqhtx.html