一:提取指定模块的基因名
提取基因信息,进行下游分析包括GO/KEGG等功能数据库的注释。
# Select module
module = "turquoise";
# Select module probes
probes = colnames(datExpr) ## 我们例子里面的probe就是基因名
inModule = (moduleColors==module);
modProbes = probes[inModule];
二:模块的导出
主要模块里面的基因直接的相互作用关系信息可以导出到cytoscape,VisANT等网络可视化软件。
# Recalculate topological overlap
TOM = TOMsimilarityFromExpr(datExpr, power = sft$powerEstimate);
# Select module
module = "turquoise";
# Select module probes
probes = colnames(datExpr) ## 我们例子里面的probe就是基因名
inModule = (moduleColors==module);
modProbes = probes[inModule];
## 也是提取指定模块的基因名
# Select the corresponding Topological Overlap
modTOM = TOM[inModule, inModule];
dimnames(modTOM) = list(modProbes, modProbes)
三:模块对应的基因关系矩阵
1.首先是导出到VisANT
vis = exportNetworkToVisANT(modTOM,
file = paste("VisANTInput-", module, ".txt", sep=""),
weighted = TRUE,
threshold = 0)
2.然后是导出到cytoscape
cyt = exportNetworkToCytoscape(
modTOM,
edgeFile = paste("CytoscapeInput-edges-", paste(module, collapse="-"), ".txt", sep=""),
nodeFile = paste("CytoscapeInput-nodes-", paste(module, collapse="-"), ".txt", sep=""),
weighted = TRUE,
threshold = 0.02,
nodeNames = modProbes,
nodeAttr = moduleColors[inModule]
);
四:模块内的分析—— 提取hub genes
hub genes指模块中连通性(connectivity)较高的基因,如设定排名前30或前10%)。
高连通性的Hub基因通常为调控因子(调控网络中处于偏上游的位置),而低连通性的基因通常为调控网络中偏下游的基因(例如,转运蛋白、催化酶等)。
HubGene: |kME| >=阈值(0.8)
4.1 计算连通性
### Intramodular connectivity, module membership, and screening for intramodular hub genes
# (1) Intramodular connectivity
# moduleColors <- labels2colors(net$colors)
connet=abs(cor(datExpr,use="p"))^6
Alldegrees1=intramodularConnectivity(connet, moduleColors)
head(Alldegrees1)
4.2 模块内的连通性与gene显著性的关系
# (2) Relationship between gene significance and intramodular connectivity
which.module="blue"
EB= as.data.frame(datTraits[,1]); # change specific
names(EB) = "EB"
GS1 = as.numeric(cor(EB,datExpr, use="p"))
GeneSignificance=abs(GS1)
colorlevels=unique(moduleColors)
sizeGrWindow(9,6)
par(mfrow=c(2,as.integer(0.5+length(colorlevels)/2)))
par(mar = c(4,5,3,1))
for (i in c(1:length(colorlevels)))
{
whichmodule=colorlevels[[i]];
restrict1 = (moduleColors==whichmodule);
verboseScatterplot(Alldegrees1$kWithin[restrict1],
GeneSignificance[restrict1], col=moduleColors[restrict1],
main=whichmodule,
xlab = "Connectivity", ylab = "Gene Significance", abline = TRUE)
}
结果
4.3 计算模块内所有基因的连通性, 筛选hub genes
abs(GS1)> .9 可以根据实际情况调整参数
abs(datKME$MM.black)>.8 至少大于 >0.8
###(3) Generalizing intramodular connectivity for all genes on the array
datKME=signedKME(datExpr, MEs, outputColumnName="MM.")
# Display the first few rows of the data frame
head(datKME)
##Finding genes with high gene significance and high intramodular connectivity in
# interesting modules
# abs(GS1)> .9 可以根据实际情况调整参数
# abs(datKME$MM.black)>.8 至少大于 >0.8
FilterGenes= abs(GS1)> .9 & abs(datKME$MM.black)>.8
table(FilterGenes)
4.4 another plot for realtionship between module eigengenes
displaying module heatmap and the eigengene
sizeGrWindow(8,7);
which.module="blue"
ME=MEs[, paste("ME",which.module, sep="")]
par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2))
plotMat(t(scale(datExpr[,moduleColors==which.module ]) ),
nrgcols=30,rlabels=F,rcols=which.module,
main=which.module, cex.main=2)
par(mar=c(5, 4.2, 0, 0.7))
barplot(ME, col=which.module, main="", cex.main=2,
ylab="eigengene expression",xlab="MPP")
结果
网友评论