今天继续重复kaggle案例:科比的投篮选择。原文地址https://www.kaggle.com/xvivancos/kobe-bryant-shot-selection/report
读入数据、加载需要用到的包
setwd("../Desktop/Data_analysis_practice/Kaggle/Kobe_shot_selection/")
shots<-read.csv("data.csv")
dim(shots)
shots<-na.omit(shots)
dim(shots)
library(ggplot2)
library(tidyverse)
library(gridExtra)
不同进攻方式的投篮命中率
这里用到group_by()
和summarise()
函数。一个简单的小例子理解这两个函数的用法
df<-data.frame(First=c("A","A","A","B","B","B"),
Second=c(1,2,1,4,5,6))
df%>%
group_by(First)%>%
summarise(Accuracy=mean(Second),
counts=n())
# A tibble: 2 x 3
First Accuracy counts
<fct> <dbl> <int>
1 A 1.33 3
2 B 5.00 3
shots%>%
group_by(action_type)%>%
summarise(Accuracy=mean(shot_made_flag),counts=n())%>%
filter(counts>20)%>%
ggplot(aes(x=reorder(action_type,Accuracy),y=Accuracy))+
geom_point(aes(colour=Accuracy),size=3)+
scale_colour_gradient(low="orangered",high="chartreuse3")+
labs(title="Accurancy by shot type")+theme_bw()+
theme(axis.title.y=element_blank(),
legend.position="none",
plot.title=element_text(hjust=0.5))+
coord_flip()
Rplot14.png
这里又涉及一个小知识点:从小到大排序使用
reorder()
函数。小例子:
df<-data.frame(First=LETTERS[1:5],
Second=c(1,4,5,3,2))
p1<-ggplot(df,aes(x=First,y=Second))+
geom_bar(stat="identity",fill="darkgreen")
p2<-ggplot(df,aes(x=reorder(First,Second),y=Second))+
geom_bar(stat="identity",fill="orange")
ggpubr::ggarrange(p1,p2,ncol=1,nrow=2,labels=c("p1","p2"))
Rplot15.png
那么从大到小排序呢?暂时想到一种解决办法:
df1<-df[order(df$Second,decreasing=T),]
df1$First<-fct_inorder(df1$First)
ggplot(df1,aes(x=First,y=Second))+
geom_bar(stat="identity",fill="orangered")
Rplot16.png
每个赛季的命中率
shots%>%
group_by(season)%>%
summarise(Accuracy=mean(shot_made_flag))%>%
ggplot(aes(x=season,y=Accuracy,group=1))+
geom_line(aes(colour=Accuracy))+
geom_point(aes(colour=Accuracy),size=3)+
scale_colour_gradient(low="orangered",high="chartreuse3")+
labs(title="Accuracy by season",x="Season")+theme_bw()+
theme(legend.position="none",
plot.title=element_text(hjust=0.5),
axis.text.x=element_text(angle=45,hjust=1))
Rplot17.png
由上图可以看出最后三个赛季科比的命中率断崖式下跌。原文作者的话:As we see, the accuracy begins to decrease badly from the 2013-14 season. Why didn't you retire before, Kobe?
常规赛季后赛命中率对比
shots%>%
group_by(season)%>%
summarise(Playoff=mean(shot_made_flag[playoffs==1]),
RegularSeason=mean(shot_made_flag[playoffs==0]))%>%
ggplot(aes(x=season,group=1))+
geom_line(aes(y=Playoff,color="Playoff"))+
geom_line(aes(y=RegularSeason,colour="RegularSeason"))+
geom_point(aes(y=Playoff,color="Playoff"),size=3)+
geom_point(aes(y=RegularSeason,color="RegularSeason"))+
labs(title="Accuracy by season",
subtitle="Playoff and Regular Season",
x="Season",y="Accuracy")+theme_bw()+
theme(legend.title=element_blank(),
plot.title=element_text(hjust=0.5),
plot.subtitle=element_text(hjust=0.5),
axis.text.x=element_text(angle=45,hjust=1))
Rplot18.png
两分球和三分球命中率
shots %>%
group_by(season) %>%
summarise(TwoPoint=mean(shot_made_flag[shot_type=="2PT Field Goal"]),
ThreePoint=mean(shot_made_flag[shot_type=="3PT Field Goal"])) %>%
ggplot(aes(x=season, group=1)) +
geom_line(aes(y=TwoPoint, colour="TwoPoint")) +
geom_line(aes(y=ThreePoint, colour="ThreePoint")) +
geom_point(aes(y=TwoPoint, colour="TwoPoint"), size=3) +
geom_point(aes(y=ThreePoint, colour="ThreePoint"), size=3) +
labs(title="Accuracy by season",
subtitle="2PT Field Goal and 3PT Field Goal",
x="Season", y="Accuracy") +
theme_bw() +
theme(legend.title=element_blank(),
plot.title=element_text(hjust=0.5),
plot.subtitle=element_text(hjust=0.5),
axis.text.x=element_text(angle=45, hjust=1))
Rplot19.png
从上图看到2013-2014赛季科比的3分命中率极低。哪位忠实的球迷还能想起来2013-2014赛季的科比是什么情况吗?
不同的对手两分球三分球命中率
shots %>%
group_by(opponent) %>%
summarise(TwoPoint=mean(shot_made_flag[shot_type=="2PT Field Goal"]),
ThreePoint=mean(shot_made_flag[shot_type=="3PT Field Goal"])) %>%
ggplot(aes(x=opponent, group=1)) +
geom_line(aes(y=TwoPoint, colour="TwoPoint")) +
geom_line(aes(y=ThreePoint, colour="ThreePoint")) +
geom_point(aes(y=TwoPoint, colour="TwoPoint"), size=3) +
geom_point(aes(y=ThreePoint, colour="ThreePoint"), size=3) +
labs(title="Accuracy by opponent",
subtitle="2PT Field Goal and 3PT Field Goal",
x="Opponent", y="Accuracy") +
theme_bw() +
theme(legend.title=element_blank(),
plot.title=element_text(hjust=0.5),
plot.subtitle=element_text(hjust=0.5),
axis.text.x=element_text(angle=45, hjust=1))
Rplot20.png
不同出手距离投篮命中率
shots %>%
group_by(shot_distance) %>%
summarise(Accuracy=mean(shot_made_flag)) %>%
ggplot(aes(x=shot_distance, y=Accuracy)) +
geom_line(aes(colour=Accuracy)) +
geom_point(aes(colour=Accuracy), size=2) +
scale_colour_gradient(low="orangered", high="chartreuse3") +
labs(title="Accuracy by shot distance", x="Shot distance (ft.)") +
xlim(c(0,45)) +
theme_bw() +
theme(legend.position="none",
plot.title=element_text(hjust=0.5))
Rplot21.png
不同区域的投篮命中率
p7 <- shots %>%
select(lat, lon, shot_zone_range, shot_made_flag) %>%
group_by(shot_zone_range) %>%
mutate(Accuracy=mean(shot_made_flag)) %>%
ggplot(aes(x=lon, y=lat)) +
geom_point(aes(colour=Accuracy)) +
scale_colour_gradient(low="red", high="lightgreen") +
labs(title="Accuracy by shot zone range") +
ylim(c(33.7, 34.0883)) +
theme_void() +
theme(plot.title=element_text(hjust=0.5)
p8 <- shots %>%
select(lat, lon, shot_zone_area, shot_made_flag) %>%
group_by(shot_zone_area) %>%
mutate(Accuracy=mean(shot_made_flag)) %>%
ggplot(aes(x=lon, y=lat)) +
geom_point(aes(colour=Accuracy)) +
scale_colour_gradient(low="red", high="lightgreen") +
labs(title="Accuracy by shot zone area") +
ylim(c(33.7, 34.0883)) +
theme_void() +
theme(legend.position="none",
plot.title=element_text(hjust=0.5))
p9 <- shots %>%
select(lat, lon, shot_zone_basic, shot_made_flag) %>%
group_by(shot_zone_basic) %>%
mutate(Accuracy=mean(shot_made_flag)) %>%
ggplot(aes(x=lon, y=lat)) +
geom_point(aes(colour=Accuracy)) +
scale_colour_gradient(low="red", high="lightgreen") +
labs(title="Accuracy by shot zone basic") +
ylim(c(33.7, 34.0883)) +
theme_void() +
theme(legend.position="none",
plot.title=element_text(hjust=0.5))
grid.arrange(p7, p8, p9, layout_matrix=cbind(c(1,2), c(1,3)))
Rplot22.png
欢迎喜欢篮球的R语言初学者关注我的公众号 小明的数据分析笔记本
公众号二维码.jpg
网友评论