美文网首页R
kaggle案例重复:科比的投篮选择之二

kaggle案例重复:科比的投篮选择之二

作者: 小明的数据分析笔记本 | 来源:发表于2019-04-30 22:30 被阅读29次

    今天继续重复kaggle案例:科比的投篮选择。原文地址https://www.kaggle.com/xvivancos/kobe-bryant-shot-selection/report

    读入数据、加载需要用到的包
    setwd("../Desktop/Data_analysis_practice/Kaggle/Kobe_shot_selection/")
    shots<-read.csv("data.csv")
    dim(shots)
    shots<-na.omit(shots)
    dim(shots)
    library(ggplot2)
    library(tidyverse)
    library(gridExtra)
    
    不同进攻方式的投篮命中率

    这里用到group_by()summarise()函数。一个简单的小例子理解这两个函数的用法

    df<-data.frame(First=c("A","A","A","B","B","B"),
                   Second=c(1,2,1,4,5,6))
    df%>%
      group_by(First)%>%
      summarise(Accuracy=mean(Second),
                counts=n())
    
    # A tibble: 2 x 3
      First Accuracy counts
      <fct>    <dbl>  <int>
    1 A         1.33      3
    2 B         5.00      3
    
    shots%>%
      group_by(action_type)%>%
      summarise(Accuracy=mean(shot_made_flag),counts=n())%>%
      filter(counts>20)%>%
      ggplot(aes(x=reorder(action_type,Accuracy),y=Accuracy))+
      geom_point(aes(colour=Accuracy),size=3)+
      scale_colour_gradient(low="orangered",high="chartreuse3")+
      labs(title="Accurancy by shot type")+theme_bw()+
      theme(axis.title.y=element_blank(),
            legend.position="none",
            plot.title=element_text(hjust=0.5))+
      coord_flip()
    
    Rplot14.png
    这里又涉及一个小知识点:从小到大排序使用reorder()函数。小例子:
    df<-data.frame(First=LETTERS[1:5],
                   Second=c(1,4,5,3,2))
    p1<-ggplot(df,aes(x=First,y=Second))+
      geom_bar(stat="identity",fill="darkgreen")
    p2<-ggplot(df,aes(x=reorder(First,Second),y=Second))+
      geom_bar(stat="identity",fill="orange")
    
    ggpubr::ggarrange(p1,p2,ncol=1,nrow=2,labels=c("p1","p2"))
    
    Rplot15.png

    那么从大到小排序呢?暂时想到一种解决办法:

    df1<-df[order(df$Second,decreasing=T),]
    df1$First<-fct_inorder(df1$First)
    ggplot(df1,aes(x=First,y=Second))+
      geom_bar(stat="identity",fill="orangered")
    
    Rplot16.png
    每个赛季的命中率
    shots%>%
      group_by(season)%>%
      summarise(Accuracy=mean(shot_made_flag))%>%
      ggplot(aes(x=season,y=Accuracy,group=1))+
      geom_line(aes(colour=Accuracy))+
      geom_point(aes(colour=Accuracy),size=3)+
      scale_colour_gradient(low="orangered",high="chartreuse3")+
      labs(title="Accuracy by season",x="Season")+theme_bw()+
      theme(legend.position="none",
            plot.title=element_text(hjust=0.5),
            axis.text.x=element_text(angle=45,hjust=1))
    
    Rplot17.png

    由上图可以看出最后三个赛季科比的命中率断崖式下跌。原文作者的话:As we see, the accuracy begins to decrease badly from the 2013-14 season. Why didn't you retire before, Kobe?

    常规赛季后赛命中率对比
    shots%>%
      group_by(season)%>%
      summarise(Playoff=mean(shot_made_flag[playoffs==1]),
                RegularSeason=mean(shot_made_flag[playoffs==0]))%>%
      ggplot(aes(x=season,group=1))+
      geom_line(aes(y=Playoff,color="Playoff"))+
      geom_line(aes(y=RegularSeason,colour="RegularSeason"))+
      geom_point(aes(y=Playoff,color="Playoff"),size=3)+
      geom_point(aes(y=RegularSeason,color="RegularSeason"))+
      labs(title="Accuracy by season",
           subtitle="Playoff and Regular Season",
           x="Season",y="Accuracy")+theme_bw()+
      theme(legend.title=element_blank(),
            plot.title=element_text(hjust=0.5),
            plot.subtitle=element_text(hjust=0.5),
            axis.text.x=element_text(angle=45,hjust=1))
    
    
    Rplot18.png
    两分球和三分球命中率
    shots %>%
      group_by(season) %>%
      summarise(TwoPoint=mean(shot_made_flag[shot_type=="2PT Field Goal"]),
                ThreePoint=mean(shot_made_flag[shot_type=="3PT Field Goal"])) %>%
      ggplot(aes(x=season, group=1)) +
      geom_line(aes(y=TwoPoint, colour="TwoPoint")) +
      geom_line(aes(y=ThreePoint, colour="ThreePoint")) +
      geom_point(aes(y=TwoPoint, colour="TwoPoint"), size=3) +
      geom_point(aes(y=ThreePoint, colour="ThreePoint"), size=3) +
      labs(title="Accuracy by season", 
           subtitle="2PT Field Goal and 3PT Field Goal",
           x="Season", y="Accuracy") +
      theme_bw() +
      theme(legend.title=element_blank(),
            plot.title=element_text(hjust=0.5),
            plot.subtitle=element_text(hjust=0.5),
            axis.text.x=element_text(angle=45, hjust=1)) 
    
    Rplot19.png

    从上图看到2013-2014赛季科比的3分命中率极低。哪位忠实的球迷还能想起来2013-2014赛季的科比是什么情况吗?

    不同的对手两分球三分球命中率
    shots %>%
      group_by(opponent) %>%
      summarise(TwoPoint=mean(shot_made_flag[shot_type=="2PT Field Goal"]),
                ThreePoint=mean(shot_made_flag[shot_type=="3PT Field Goal"])) %>%
      ggplot(aes(x=opponent, group=1)) +
      geom_line(aes(y=TwoPoint, colour="TwoPoint")) +
      geom_line(aes(y=ThreePoint, colour="ThreePoint")) +
      geom_point(aes(y=TwoPoint, colour="TwoPoint"), size=3) +
      geom_point(aes(y=ThreePoint, colour="ThreePoint"), size=3) +
      labs(title="Accuracy by opponent", 
           subtitle="2PT Field Goal and 3PT Field Goal",
           x="Opponent", y="Accuracy") +
      theme_bw() +
      theme(legend.title=element_blank(),
            plot.title=element_text(hjust=0.5),
            plot.subtitle=element_text(hjust=0.5),
            axis.text.x=element_text(angle=45, hjust=1)) 
    
    Rplot20.png
    不同出手距离投篮命中率
    shots %>%
      group_by(shot_distance) %>%
      summarise(Accuracy=mean(shot_made_flag)) %>%
      ggplot(aes(x=shot_distance, y=Accuracy)) + 
      geom_line(aes(colour=Accuracy)) +
      geom_point(aes(colour=Accuracy), size=2) +
      scale_colour_gradient(low="orangered", high="chartreuse3") +
      labs(title="Accuracy by shot distance", x="Shot distance (ft.)") +
      xlim(c(0,45)) +
      theme_bw() +
      theme(legend.position="none",
            plot.title=element_text(hjust=0.5)) 
    
    Rplot21.png
    不同区域的投篮命中率
    p7 <- shots %>%
      select(lat, lon, shot_zone_range, shot_made_flag) %>%
      group_by(shot_zone_range) %>%
      mutate(Accuracy=mean(shot_made_flag)) %>%
      ggplot(aes(x=lon, y=lat)) +
      geom_point(aes(colour=Accuracy)) +
      scale_colour_gradient(low="red", high="lightgreen") +
      labs(title="Accuracy by shot zone range") +
      ylim(c(33.7, 34.0883)) +
      theme_void() +
      theme(plot.title=element_text(hjust=0.5)
    p8 <- shots %>%
      select(lat, lon, shot_zone_area, shot_made_flag) %>%
      group_by(shot_zone_area) %>%
      mutate(Accuracy=mean(shot_made_flag)) %>%
      ggplot(aes(x=lon, y=lat)) +
      geom_point(aes(colour=Accuracy)) +
      scale_colour_gradient(low="red", high="lightgreen") +
      labs(title="Accuracy by shot zone area") +
      ylim(c(33.7, 34.0883)) +
      theme_void() +
      theme(legend.position="none",
            plot.title=element_text(hjust=0.5))
    p9 <- shots %>%
      select(lat, lon, shot_zone_basic, shot_made_flag) %>%
      group_by(shot_zone_basic) %>%
      mutate(Accuracy=mean(shot_made_flag)) %>%
      ggplot(aes(x=lon, y=lat)) +
      geom_point(aes(colour=Accuracy)) +
      scale_colour_gradient(low="red", high="lightgreen") +
      labs(title="Accuracy by shot zone basic") +
      ylim(c(33.7, 34.0883)) +
      theme_void() +
      theme(legend.position="none",
            plot.title=element_text(hjust=0.5))
    grid.arrange(p7, p8, p9, layout_matrix=cbind(c(1,2), c(1,3)))
    
    Rplot22.png
    欢迎喜欢篮球的R语言初学者关注我的公众号 小明的数据分析笔记本
    公众号二维码.jpg

    相关文章

      网友评论

        本文标题:kaggle案例重复:科比的投篮选择之二

        本文链接:https://www.haomeiwen.com/subject/tzdbnqtx.html