机器学习笔记 第8课:分类和回归树

作者: 首席IT民工 | 来源:发表于2018-11-27 19:07 被阅读3次

决策树是机器学习中用于预测建模的一种重要的算法类型。

决策树模型的表现形式是二叉树。实际上,它就是算法和数据结构中的二叉树,没什么太花哨的。 每个节点代表一个输入变量(x)和该变量上的分支(这里假设是数字类型的变量)。

树的叶节点包含用于进行预测的输出变量(y)。 通过不断遍历树的各个分支,最终到达某个叶节点,并在该叶节点处输出你要预测的类别值。

决策树的学习过程很短,预测速度非常快。 对于一般类型的问题,他们的准确性不错。你也不需要对数据作特别的准备。

决策树具有高方差,但如果与集成学习搭配使用,可以提高预测的准确度。我们将在第13课和第14课中讨论这个主题。

相关文章

  • 机器学习笔记 第8课:分类和回归树

    决策树是机器学习中用于预测建模的一种重要的算法类型。 决策树模型的表现形式是二叉树。实际上,它就是算法和数据结构中...

  • 决策树算法原理(分类树)及实现

    简单介绍   机器学习主要分为俩大类:分类问题和回归问题。决策树是常用的分类学习算法,当然也能用于处理回归问题,同...

  • 机器学习算法分类

    机器学习算法分类 监督学习(预测)分类:K-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络回归:线性回...

  • 第一章 回归,分类 & 聚类

    •分类数据 •数据回归分析 •聚类数据 •如何构建机器学习问题 虽然还有其他模型,但是回归,分类和聚类在机器学习问...

  • 神经网络:什么是深度学习

    深度学习说白了就是机器学习中的神经网络。 相关知识:分类、回归 分类和回归是机器学习中两个非常重要的问题。 在分类...

  • 算法工程师知识树 持续更新

    机器学习算法 监督学习分类模型LRSVM决策树NB回归模型线性回归 最小二乘融合模型baggingRFboosti...

  • 机器学习笔记

    主要包括经典机器学习中分类和回归的思想。

  • 常见线性回归|理论与算法实现

    01 分类 v.s. 回归 之前我们学习了很多分类方法,在机器学习中,还有一种任务叫回归,回归和分类其实挺像的,都...

  • 机器学习基础算法(1)-KNN

    KNN (最近邻分类规则)--最简单的机器学习 分类,回归算法 个人认为机器学习的三个最主要的特性,是 分类,回归...

  • 机器学习新手必学十大算法指南

    摘要:本文为机器学习新手介绍了十种必备算法:线性回归、逻辑回归、线性判别分析、分类和回归树、朴素贝叶斯、K-近邻算...

网友评论

    本文标题:机器学习笔记 第8课:分类和回归树

    本文链接:https://www.haomeiwen.com/subject/wwsnqqtx.html