1、问什么需要模板
因为在之后的分类器创建过程中,许多代码是通用的。
2、修改
我们只需要把创建的逻辑回归分类器那两行代码去掉即可,由于后面的分类器都是以classifier命名的。
3、扩展
需要修改的地方有导入数据集,选取列,以及预测测试集时要选取自变量列,在绘制模型时,由于是点对点的形式,如果有白线可以减小间隔,如果运算速度过慢,也就是出图过慢,可以加大间隔。
代码:
# Classification template
# Importing the dataset
dataset = read.csv('Social_Network_Ads.csv')
dataset = dataset[3:5]
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Purchased, SplitRatio = 0.75)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
# Feature Scaling
training_set[, 1:2] = scale(training_set[, 1:2])
test_set[, 1:2] = scale(test_set[, 1:2])
# Fitting the classifier to the Training set
# Create your classifier here
# Predicting the Test set results
prob_pred=predict(classifier, type = 'response', newdata=test_set[-3])
y_pred=ifelse(prob_pred>0.5, 1, 0)
# Making the Confusion Matrix
cm = table(test_set[,3], y_pred)
# Visualising the Training set results
# install.packages(ElemStatLearn)
library(ElemStatLearn)
set = training_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Age', 'EstimatedSalary')
prob_set = predict(classifier, type = 'response', newdata = grid_set)
y_grid = ifelse(prob_set > 0.5, 1, 0)
plot(set[, -3],
main = 'Classifier (Training set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
# Visualising the Test set results
# install.packages(ElemStatLearn)
library(ElemStatLearn)
set = test_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Age', 'EstimatedSalary')
prob_set = predict(classifier, type = 'response', newdata = grid_set)
y_grid = ifelse(prob_set > 0.5, 1, 0)
plot(set[, -3],
main = 'Classifier (Test set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
网友评论