给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
容器图像表示图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾。 此外,我们会使用变量 maxarea 来持续存储到目前为止所获得的最大面积。 在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 maxarea,并将指向较短线段的指针向较长线段那端移动一步。
C++
class Solution {
public:
int maxArea(vector<int>& height) {
int len = height.size();
int i=0, j=len-1;
int volume = 0;
while(i<j){
int width = j-i;
int h = height[i] < height[j]?height[i++]:height[j--];
int temp = h*width;
if(temp > volume){
volume = temp;
}
}
return volume;
}
};
网友评论