深入理解GCD之dispatch_group

作者: NeroXie | 来源:发表于2018-08-21 17:45 被阅读359次

    之前已经介绍了dispatch_semaphore的底层实现,dispatch_group的实现是基于前者的。在看源码之前,我们先看一下我们是如何应用的。假设有这么场景:有一个A耗时操作,B和C两个网络请求和一个耗时操作C当ABC都执行完成后,刷新页面。我们可以用dispatch_group实现。关键如下:

    - (void)viewDidLoad {
        [super viewDidLoad];
        
            __block NSInteger number = 0;
        
        dispatch_group_t group = dispatch_group_create();
        
        //A耗时操作
        dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
            sleep(3);
            number += 2222;
        });
        
        //B网络请求
        dispatch_group_enter(group);
        [self sendRequestWithCompletion:^(id response) {
            number += [response integerValue];
            dispatch_group_leave(group);
        }];
        
        //C网络请求
        dispatch_group_enter(group);
        [self sendRequestWithCompletion:^(id response) {
            number += [response integerValue];
            dispatch_group_leave(group);
        }];
        
        dispatch_group_notify(group, dispatch_get_main_queue(), ^{
            NSLog(@"%zd", number);
        });
    }
    
    - (void)sendRequestWithCompletion:(void (^)(id response))completion {
        //模拟一个网络请求
        dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
        dispatch_async(queue, ^{
            sleep(2);
            dispatch_async(dispatch_get_main_queue(), ^{
                if (completion) completion(@1111);
            });
        });
    }
    

    接下来我们根据上面的流程来看一下dispatch_group的相关API

    dispatch_group_create

    dispatch_group_t
    dispatch_group_create(void)
    {
        return (dispatch_group_t)dispatch_semaphore_create(LONG_MAX);
    }
    

    dispatch_group_create其实就是创建了一个valueLONG_MAXdispatch_semaphore信号量

    dispatch_group_async

    void
    dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
            dispatch_block_t db)
    {
        dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db),
                _dispatch_call_block_and_release);
    }
    

    dispatch_group_async只是dispatch_group_async_f的封装

    dispatch_group_async_f

    void
    dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
            dispatch_function_t func)
    {
        dispatch_continuation_t dc;
    
        _dispatch_retain(dg);
        dispatch_group_enter(dg);
    
        dc = fastpath(_dispatch_continuation_alloc_cacheonly());
        if (!dc) {
            dc = _dispatch_continuation_alloc_from_heap();
        }
    
        dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT);
        dc->dc_func = func;
        dc->dc_ctxt = ctxt;
        dc->dc_group = dg;
    
        // No fastpath/slowpath hint because we simply don't know
        if (dq->dq_width != 1 && dq->do_targetq) {
            return _dispatch_async_f2(dq, dc);
        }
    
        _dispatch_queue_push(dq, dc);
    }
    

    从上面的代码我们可以看出dispatch_group_async_fdispatch_async_f相似。dispatch_group_async_f多了dispatch_group_enter(dg);,另外在do_vtable的赋值中dispatch_group_async_f多了一个DISPATCH_OBJ_GROUP_BIT的标记符。既然添加了dispatch_group_enter必定会存在dispatch_group_leave。在之前《深入理解GCD之dispatch_queue》介绍_dispatch_continuation_pop函数的源码中有一段代码如下:

        _dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
        if (dg) {
            //group需要进行调用dispatch_group_leave并释放信号
            dispatch_group_leave(dg);
            _dispatch_release(dg);
        }
    

    所以dispatch_group_async_f函数中的dispatch_group_leave是在_dispatch_continuation_pop函数中调用的。

    这里概括一下dispatch_group_async_f的工作流程:

    1. 调用dispatch_group_enter
    2. 将block和queue等信息记录到dispatch_continuation_t结构体中,并将它加入到group的链表中。
    3. _dispatch_continuation_pop执行时会判断任务是否为group,是的话执行完任务再调用dispatch_group_leave以达到信号量的平衡。

    dispatch_group_enter

    void
    dispatch_group_enter(dispatch_group_t dg)
    {
        dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
    
        (void)dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
    }
    

    dispatch_group_enterdispatch_group_t转换成dispatch_semaphore_t,并调用dispatch_semaphore_wait,原子性减1后,进入等待状态直到有信号唤醒。所以说dispatch_group_enter就是对dispatch_semaphore_wait的封装

    dispatch_group_leave

    void
    dispatch_group_leave(dispatch_group_t dg)
    {
        dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
        dispatch_atomic_release_barrier();
        long value = dispatch_atomic_inc2o(dsema, dsema_value);//dsema_value原子性加1
        if (slowpath(value == LONG_MIN)) {//内存溢出,由于dispatch_group_leave在dispatch_group_enter之前调用
            DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
        }
        if (slowpath(value == dsema->dsema_orig)) {//表示所有任务已经完成,唤醒group
            (void)_dispatch_group_wake(dsema);
        }
    }
    

    从上面的源代码中我们看到dispatch_group_leavedispatch_group_t转换成dispatch_semaphore_t后将dsema_value的值原子性加1。如果valueLONG_MIN程序crash;如果value等于dsema_orig表示所有任务已完成,调用_dispatch_group_wake唤醒group(_dispatch_group_wake的用于和notify有关,我们会在后面介绍)。因为在enter的时候进行了原子性减1操作。所以在leave的时候需要原子性加1。

    这里先说明一下enterleave之间的关系:

    1. dispatch_group_leave与dispatch_group_enter配对使用。当调用了dispatch_group_enter而没有调用dispatch_group_leave时,由于value不等于dsema_orig不会走到唤醒逻辑,dispatch_group_notify中的任务无法执行或者dispatch_group_wait收不到信号而卡住线程。

    2. dispatch_group_enter必须在dispatch_group_leave之前出现。当dispatch_group_leavedispatch_group_enter多调用了一次或者说在dispatch_group_enter之前被调用的时候,dispatch_group_leave进行原子性加1操作,相当于valueLONGMAX+1,发生数据长度溢出,变成LONG_MIN,由于value == LONG_MIN成立,程序发生crash。

    dispatch_group_notify

    void
    dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
            dispatch_block_t db)
    {
        dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
                _dispatch_call_block_and_release);
    }
    

    dispatch_group_notifydispatch_group_notify_f的封装,具体实现在后者。

    dispatch_group_notify_f

    void
    dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
            void (*func)(void *))
    {
        dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
        struct dispatch_sema_notify_s *dsn, *prev;
    
        //封装dispatch_continuation_t结构体
        // FIXME -- this should be updated to use the continuation cache
        while (!(dsn = calloc(1, sizeof(*dsn)))) {
            sleep(1);
        }
    
        dsn->dsn_queue = dq;
        dsn->dsn_ctxt = ctxt;
        dsn->dsn_func = func;
        _dispatch_retain(dq);
        dispatch_atomic_store_barrier();
        //将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group
        prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn);
        if (fastpath(prev)) {
            prev->dsn_next = dsn;
        } else {
            _dispatch_retain(dg);
            (void)dispatch_atomic_xchg2o(dsema, dsema_notify_head, dsn);
            if (dsema->dsema_value == dsema->dsema_orig) {//任务已经完成,唤醒group
                _dispatch_group_wake(dsema);
            }
        }
    }
    

    所以dispatch_group_notify函数只是用链表把所有回调通知保存起来,等待调用。

    _dispatch_group_wake

    static long
    _dispatch_group_wake(dispatch_semaphore_t dsema)
    {
        struct dispatch_sema_notify_s *next, *head, *tail = NULL;
        long rval;
        //将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head
        head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL);
        if (head) {
            // snapshot before anything is notified/woken <rdar://problem/8554546>
            //将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail
            tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL);
        }
        //将dsema的dsema_group_waiters设置为0,并返回原来的值
        rval = dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0);
        if (rval) {
            //循环调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。
            // wake group waiters
    #if USE_MACH_SEM
            _dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
            do {
                kern_return_t kr = semaphore_signal(dsema->dsema_waiter_port);
                DISPATCH_SEMAPHORE_VERIFY_KR(kr);
            } while (--rval);
    #elif USE_POSIX_SEM
            do {
                int ret = sem_post(&dsema->dsema_sem);
                DISPATCH_SEMAPHORE_VERIFY_RET(ret);
            } while (--rval);
    #endif
        }
        if (head) {
            //获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。
            // async group notify blocks
            do {
                dispatch_async_f(head->dsn_queue, head->dsn_ctxt, head->dsn_func);
                _dispatch_release(head->dsn_queue);
                next = fastpath(head->dsn_next);
                if (!next && head != tail) {
                    while (!(next = fastpath(head->dsn_next))) {
                        _dispatch_hardware_pause();
                    }
                }
                free(head);
            } while ((head = next));
            _dispatch_release(dsema);
        }
        return 0;
    }
    

    _dispatch_group_wake主要的作用有两个:

    1. 调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。

    2. 获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。

    到这里我们已经差不多知道了dispatch_group工作过程,我们用一张图表示:

    dispatch_group.png

    dispatch_group_wait

    dispatch_group_wait用于等待group中的任务完成。

    long
    dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout)
    {
        dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
    
        if (dsema->dsema_value == dsema->dsema_orig) {//没有需要执行的任务
            return 0;
        }
        if (timeout == 0) {//返回超时
    #if USE_MACH_SEM
            return KERN_OPERATION_TIMED_OUT;
    #elif USE_POSIX_SEM
            errno = ETIMEDOUT;
            return (-1);
    #endif
        }
        return _dispatch_group_wait_slow(dsema, timeout);
    }
    

    _dispatch_group_wait_slow

    static long
    _dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout)
    {
        long orig;
    
    again:
        // check before we cause another signal to be sent by incrementing
        // dsema->dsema_group_waiters
        if (dsema->dsema_value == dsema->dsema_orig) {
            return _dispatch_group_wake(dsema);
        }
        // Mach semaphores appear to sometimes spuriously wake up. Therefore,
        // we keep a parallel count of the number of times a Mach semaphore is
        // signaled (6880961).
        (void)dispatch_atomic_inc2o(dsema, dsema_group_waiters);
        // check the values again in case we need to wake any threads
        if (dsema->dsema_value == dsema->dsema_orig) {
            return _dispatch_group_wake(dsema);
        }
    
    #if USE_MACH_SEM
        mach_timespec_t _timeout;
        kern_return_t kr;
    
        _dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
    
        // From xnu/osfmk/kern/sync_sema.c:
        // wait_semaphore->count = -1; /* we don't keep an actual count */
        //
        // The code above does not match the documentation, and that fact is
        // not surprising. The documented semantics are clumsy to use in any
        // practical way. The above hack effectively tricks the rest of the
        // Mach semaphore logic to behave like the libdispatch algorithm.
    
        switch (timeout) {
        default:
            do {
                uint64_t nsec = _dispatch_timeout(timeout);
                _timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC);
                _timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC);
                kr = slowpath(semaphore_timedwait(dsema->dsema_waiter_port,
                        _timeout));
            } while (kr == KERN_ABORTED);
    
            if (kr != KERN_OPERATION_TIMED_OUT) {
                DISPATCH_SEMAPHORE_VERIFY_KR(kr);
                break;
            }
            // Fall through and try to undo the earlier change to
            // dsema->dsema_group_waiters
        case DISPATCH_TIME_NOW:
            while ((orig = dsema->dsema_group_waiters)) {
                if (dispatch_atomic_cmpxchg2o(dsema, dsema_group_waiters, orig,
                        orig - 1)) {
                    return KERN_OPERATION_TIMED_OUT;
                }
            }
            // Another thread called semaphore_signal().
            // Fall through and drain the wakeup.
        case DISPATCH_TIME_FOREVER:
            do {
                kr = semaphore_wait(dsema->dsema_waiter_port);
            } while (kr == KERN_ABORTED);
            DISPATCH_SEMAPHORE_VERIFY_KR(kr);
            break;
        }
    #elif USE_POSIX_SEM
    //这部分代码省略
    #endif
    
        goto again;
    }
    

    从上面的代码我们发现_dispatch_group_wait_slow_dispatch_semaphore_wait_slow的逻辑很接近。都利用mach内核的semaphore进行信号的发送。区别在于_dispatch_semaphore_wait_slow在等待结束后是return,而_dispatch_group_wait_slow在等待结束是调用_dispatch_group_wake去唤醒这个group。

    总结

    1. dispatch_group是一个初始值为LONG_MAX的信号量,group中的任务完成是判断其value是否恢复成初始值。

    2. dispatch_group_enterdispatch_group_leave必须成对使用并且支持嵌套。

    3. 如果dispatch_group_enterdispatch_group_leave多,由于value不等于dsema_orig不会走到唤醒逻辑,dispatch_group_notify中的任务无法执行或者dispatch_group_wait收不到信号而卡住线程。如果是dispatch_group_leave多,则会引起崩溃。

    相关文章

      网友评论

      本文标题:深入理解GCD之dispatch_group

      本文链接:https://www.haomeiwen.com/subject/zpijiftx.html