美文网首页我们爱数学
趣味数学:七葫芦娃换宝升级到八仙换宝

趣味数学:七葫芦娃换宝升级到八仙换宝

作者: 易水樵 | 来源:发表于2022-06-07 16:31 被阅读0次

趣味数学:七葫芦娃换宝升级到八仙换宝

易老师为思思和方方上课。

老师问:【葫芦七兄弟交换宝物】的问题,大家都搞懂了吗?

二人异口同声回答,搞懂了!

易老师说:学数学,就是学思想和方法;一定不能满足于答对一两个具体的习题;一定要深入彻底的了解解题的原理。

如果对基本的原理了解不够深入,命题人把具体的数字一换,可能你就会答错。

方方回答说:老师,我们真的搞懂了。不信,你出题考考我们。

易老师:好的,我现在就出一个相似的题。你们试试,能不能正确解答?


八位仙人交换宝物

8 位仙人各有一件宝物,每一位仙人都送出自己的宝物,也得到另一位仙人的宝物,但不允许任意两位仙人互相交换宝物。一共有多少种不同的交换方案?


两位小同学奋笔疾书,几分钟后同时交卷。
其中方方的解答是这样的。

八位仙人交换宝物,交换方案可以分为以下三类。
第一类,八位仙人分为一个 8人大组。按照圆周排列模型,具体的交换方案数为:A^7_7

第二类,八位仙人分为两组,一组三人,一组五人。

针对这一类,需要分三步走:

(1)分组的方案数为 C^3_8;
(2)3 人小组的交换方案数为 A^2_2
(3)5 人小组的交换方案数为 A^4_4

根据乘法原理可以求出,这一类方案的总数为 C^3_8 \times A^2_2 \times A^4_4;

第三类,8 位仙人可以可以分为两组,每组 4人。
与第二类相似,第三类的方案数为 C^4_8 \times A^3_3 \times A^3_3

根据加法原理,八位仙人的交换方案总数等于三类方案之和,也就是:

A^7_7+C^3_8 \times A^2_2 \times A^4_4+C^4_8 \times A^3_3 \times A^3_3


易老师:思思,你的结论和方方一样吗?
思思:一样。


易老师笑着说:看来,乘法原理和乘法原理,大家已经基本掌握。方方的解题思路,大方向是正确的。

不过,现在让我们更深入一些。我们知道,从 8人中选出 4 人,共有 C^4_8 种选法。这个数量有点大,能不能写出一些具体的实例呢?思思你来写。

思思同学很快写出了以下实例:

\widehat{1234}
\widehat{1235}
\widehat{1236}
\widehat{1237}
\widehat{1238}
\widehat{1245}

\cdots

\widehat{4568}
\widehat{4678}
\widehat{5678}

很好!

易老师继续说:既然是两个组,我们不妨把方方刚才写的这组称为甲组,另外一组称为乙组。思思,你来把对应的乙组成员写出来。

按照老师的要求,思思很快出另外一组成员,于是得到了以下表格。

甲组 乙组
\widehat{1234} \widehat{5678}
\widehat{1235} \widehat{4678}
\widehat{1236} \widehat{4578}
\widehat{1237} \widehat{4568}
\widehat{1238} \widehat{4567}
\widehat{1245} \widehat{3678}
\cdots \cdots
\widehat{4568} \widehat{1237}
\widehat{4578} \widehat{1236}
\widehat{4678} \widehat{1235}
\widehat{5678} \widehat{1234}

易老师:仔细看上面的表格,有什么发现?

两人看了一会儿,思思忽然说:我发现,倒数第一种和第一种,其实是同一种分组方案。

方方接着说:不只一对。第一种、第二种也是这样。每种分组方案在这个表中都出现了 2次。

易老师:也就是说,我们前面的计算中,存在重复统计的情况。

方方:我想起来了,这种情况以前遇到过。在握手问题中,AB,BA 实际上代表同一次握手。所以,应该除以 2.

易老师:完全正确。在第三类交换中,正确的分组数应该是 C^4_8 \div 2.

所以,八位仙人的交换方案总数是:

A^7_7+C^3_8 \times A^2_2 \times A^4_4+C^4_8 \times A^3_3 \times A^3_3 \div 2


易老师:学数学,就是学原理,学思想,学方法。数学解题,不能停留在表面,一定要深入分析,不断总结,才能进步。

具体到加法原理、乘法原理和排列组合的应用,有一些细微的区别,一定要留意。

在分组的计算过程中,有时需要除以 2,有时不需要。我们能不能举两个简单的实例加以说明?

按照老师要求,两位同学分别编了一个题。


方方编的应用题

8位同学周末到公园游玩。他们发现:公园的小船限乘 4人。所以,8人需要分乘两条小船。问:这 8人分成两组,有几种分法?

思思编的应用题

有 8位好朋友到一家快餐店吃晚饭,由于时间较晚,店里只剩 4 份炒河粉和 4 份炒米饭。所以,需要把 8人分为两组,一组吃炒饭,一组吃炒粉。问:有多少种分组方法?


亲爱的读者朋友,以上两题有何不同,你看出来了吗?

相关文章

  • 趣味数学:七葫芦娃换宝升级到八仙换宝

    趣味数学:七葫芦娃换宝升级到八仙换宝 易老师为思思和方方上课。 老师问:【葫芦七兄弟交换宝物】的问题,大家都搞懂了...

  • 趣味数学:葫芦娃换宝升级到九龙换宝

    趣味数学:七葫芦娃换宝升级到九龙换宝 九龙换宝 传说,龙王有 9 个儿子,每个儿子有一件宝物。每一位龙子都送出自己...

  • 二胎,一个星期。

    晚上二宝拉了臭臭,我说宝爸,你可以来换尿不湿了。宝爸说,为什么每次都是我换尿不湿?他所谓的每次也就是每天晚上大概换...

  • 历史纷繁南北朝(六) 北方归一

    上次说到慕容宝参合陂大败,慕容垂气死,慕容宝顺利继承大位。可是换皇帝就如同换国家,后燕皇帝一换,感觉突然莫名弱了一...

  • 出发

    辞职换种心情,换种生活 换种方式去爱自己 爱生活 告别过去点人事物 重新出发,重新开启 给宝妈讲课,和宝妈聊天 给...

  • 童宝语录

    1.童宝妈对童宝说:“我要换老公。” 童宝听后一本正经地说:“超市里老公没有了,都被买走了,妈妈换不成老公啊。” ...

  • 2018-03-17

    周六上午看了大宝写作业没管二宝,中午给二宝换尿片发现一个上午都没有换,爷爷管抱着不管换尿片,奶奶一个上午在...

  • 睡觉

    看二宝,陪娃睡,睡不着,换隔壁屋睡

  • 2018-01-21 对话《葫芦娃》

    周末上舞蹈课时,我跟兔宝一起借了一本动画中国,第一篇就是《葫芦娃》。葫芦娃总共七集,我用了三个晚上的时间给兔宝讲完...

  • 2018.8.21感恩日记

    感恩晴朗的一天! 感恩充实的一天! 感恩今天给婆婆换买的不合适衣服,顺带给二宝买几件小内裤,这下不怕二宝尿湿没换的...

网友评论

    本文标题:趣味数学:七葫芦娃换宝升级到八仙换宝

    本文链接:https://www.haomeiwen.com/subject/dhpemrtx.html