美文网首页PythonPython数据分析
Python 数据处理(五)

Python 数据处理(五)

作者: 名本无名 | 来源:发表于2021-02-06 10:45 被阅读0次

3. DataFrame(续)

索引和选择

索引的基础语法如下

操作 语法 结果
选择列 df[col] Series
用标签选择行 df.loc[label] Series
用整数位置选择行 df.iloc[loc] Series
用布尔向量选择行 df[bool_vec] DataFrame
行切片 df[5:10] DataFrame

例如,选择行返回的是 Series,其索引是 DataFrame 的列名:

In [89]: df.loc["b"]
Out[89]: 
one            2.0
bar            2.0
flag         False
foo            bar
one_trunc      2.0
Name: b, dtype: object

In [90]: df.iloc[2]
Out[90]: 
one           3.0
bar           3.0
flag         True
foo           bar
one_trunc     NaN
Name: c, dtype: object

关于索引切片的详细内容,我们将会在后续的索引章节详细介绍

数据对齐和运算

DataFrame 对象之间的数据会根据索引和列名自动对齐,结果将是索引和列名的并集

In [91]: df = pd.DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])

In [92]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=["A", "B", "C"])

In [93]: df + df2
Out[93]: 
          A         B         C   D
0  0.045691 -0.014138  1.380871 NaN
1 -0.955398 -1.501007  0.037181 NaN
2 -0.662690  1.534833 -0.859691 NaN
3 -2.452949  1.237274 -0.133712 NaN
4  1.414490  1.951676 -2.320422 NaN
5 -0.494922 -1.649727 -1.084601 NaN
6 -1.047551 -0.748572 -0.805479 NaN
7       NaN       NaN       NaN NaN
8       NaN       NaN       NaN NaN
9       NaN       NaN       NaN NaN

DataFrame 和 Series 之间执行操作时,默认行为是 DataFrame 的列名与 Series 的索引对齐,然后按行执行广播操作。例如

In [94]: df - df.iloc[0]
Out[94]: 
          A         B         C         D
0  0.000000  0.000000  0.000000  0.000000
1 -1.359261 -0.248717 -0.453372 -1.754659
2  0.253128  0.829678  0.010026 -1.991234
3 -1.311128  0.054325 -1.724913 -1.620544
4  0.573025  1.500742 -0.676070  1.367331
5 -1.741248  0.781993 -1.241620 -2.053136
6 -1.240774 -0.869551 -0.153282  0.000430
7 -0.743894  0.411013 -0.929563 -0.282386
8 -1.194921  1.320690  0.238224 -1.482644
9  2.293786  1.856228  0.773289 -1.446531

那如果使用的是列会发生什么

>>> df
   A  B  C
0  1  3  4
1  2  5  0
2  3  1  1
3  4  7  6
4  5  2  2

>>> df - df['A']
    A   B   C   0   1   2   3   4
0 NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN

因为我们提取的 A 列的索引是 0-4,与 df 的列名 A、B、C 不匹配,最后导致结果都为 NaN

标量操作与其它数据结构是一样的

In [95]: df * 5 + 2
Out[95]: 
           A         B         C          D
0   3.359299 -0.124862  4.835102   3.381160
1  -3.437003 -1.368449  2.568242  -5.392133
2   4.624938  4.023526  4.885230  -6.575010
3  -3.196342  0.146766 -3.789461  -4.721559
4   6.224426  7.378849  1.454750  10.217815
5  -5.346940  3.785103 -1.373001  -6.884519
6  -2.844569 -4.472618  4.068691   3.383309
7  -0.360173  1.930201  0.187285   1.969232
8  -2.615303  6.478587  6.026220  -4.032059
9  14.828230  9.156280  8.701544  -3.851494

In [96]: 1 / df
Out[96]: 
          A          B         C           D
0  3.678365  -2.353094  1.763605    3.620145
1 -0.919624  -1.484363  8.799067   -0.676395
2  1.904807   2.470934  1.732964   -0.583090
3 -0.962215  -2.697986 -0.863638   -0.743875
4  1.183593   0.929567 -9.170108    0.608434
5 -0.680555   2.800959 -1.482360   -0.562777
6 -1.032084  -0.772485  2.416988    3.614523
7 -2.118489 -71.634509 -2.758294 -162.507295
8 -1.083352   1.116424  1.241860   -0.828904
9  0.389765   0.698687  0.746097   -0.854483

In [97]: df ** 4
Out[97]: 
           A             B         C             D
0   0.005462  3.261689e-02  0.103370  5.822320e-03
1   1.398165  2.059869e-01  0.000167  4.777482e+00
2   0.075962  2.682596e-02  0.110877  8.650845e+00
3   1.166571  1.887302e-02  1.797515  3.265879e+00
4   0.509555  1.339298e+00  0.000141  7.297019e+00
5   4.661717  1.624699e-02  0.207103  9.969092e+00
6   0.881334  2.808277e+00  0.029302  5.858632e-03
7   0.049647  3.797614e-08  0.017276  1.433866e-09
8   0.725974  6.437005e-01  0.420446  2.118275e+00
9  43.329821  4.196326e+00  3.227153  1.875802e+00

对于布尔运算同样适用

In [98]: df1 = pd.DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]}, dtype=bool)

In [99]: df2 = pd.DataFrame({"a": [0, 1, 1], "b": [1, 1, 0]}, dtype=bool)

In [100]: df1 & df2
Out[100]: 
       a      b
0  False  False
1  False   True
2   True  False

In [101]: df1 | df2
Out[101]: 
      a     b
0  True  True
1  True  True
2  True  True

In [102]: df1 ^ df2
Out[102]: 
       a      b
0   True   True
1   True  False
2  False   True

In [103]: -df1
Out[103]: 
       a      b
0  False   True
1   True  False
转置

与多位数组类似,可以对 DataFrame 转置,使用 T 属性或 transpose 函数

In [104]: df[:5].T
Out[104]: 
          0         1         2         3         4
A  0.271860 -1.087401  0.524988 -1.039268  0.844885
B -0.424972 -0.673690  0.404705 -0.370647  1.075770
C  0.567020  0.113648  0.577046 -1.157892 -0.109050
D  0.276232 -1.478427 -1.715002 -1.344312  1.643563
应用 numpy 函数

如果你的 DataFrame 存储的都是数字,可以使用许多 NumPy 的函数

In [105]: np.exp(df)
Out[105]: 
           A         B         C         D
0   1.312403  0.653788  1.763006  1.318154
1   0.337092  0.509824  1.120358  0.227996
2   1.690438  1.498861  1.780770  0.179963
3   0.353713  0.690288  0.314148  0.260719
4   2.327710  2.932249  0.896686  5.173571
5   0.230066  1.429065  0.509360  0.169161
6   0.379495  0.274028  1.512461  1.318720
7   0.623732  0.986137  0.695904  0.993865
8   0.397301  2.449092  2.237242  0.299269
9  13.009059  4.183951  3.820223  0.310274

In [106]: np.asarray(df)
Out[106]: 
array([[ 0.2719, -0.425 ,  0.567 ,  0.2762],
       [-1.0874, -0.6737,  0.1136, -1.4784],
       [ 0.525 ,  0.4047,  0.577 , -1.715 ],
       [-1.0393, -0.3706, -1.1579, -1.3443],
       [ 0.8449,  1.0758, -0.109 ,  1.6436],
       [-1.4694,  0.357 , -0.6746, -1.7769],
       [-0.9689, -1.2945,  0.4137,  0.2767],
       [-0.472 , -0.014 , -0.3625, -0.0062],
       [-0.9231,  0.8957,  0.8052, -1.2064],
       [ 2.5656,  1.4313,  1.3403, -1.1703]])

如果在 NumPy 通用函数中使用了多个 Series,会在执行函数之前,自动对齐。

例如

In [109]: ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"])

In [110]: ser2 = pd.Series([1, 3, 5], index=["b", "a", "c"])

In [111]: ser1
Out[111]: 
a    1
b    2
c    3
dtype: int64

In [112]: ser2
Out[112]: 
b    1
a    3
c    5
dtype: int64

In [113]: np.remainder(ser1, ser2)
Out[113]: 
a    1
b    0
c    3
dtype: int64

如果存在对应不上的索引,会被赋值为 NaN

In [114]: ser3 = pd.Series([2, 4, 6], index=["b", "c", "d"])

In [115]: ser3
Out[115]: 
b    2
c    4
d    6
dtype: int64

In [116]: np.remainder(ser1, ser3)
Out[116]: 
a    NaN
b    0.0
c    3.0
d    NaN
dtype: float64

如果在 Series 和 index 上应用二元函数时,会按照 Series 执行并输出

In [117]: ser = pd.Series([1, 2, 3])

In [118]: idx = pd.Index([4, 5, 6])

In [119]: np.maximum(ser, idx)
Out[119]: 
0    4
1    5
2    6
dtype: int64
控制台显示

在控制台显示大型数据时,会根据数据量进行折叠展示前面和后面的几行

In [120]: baseball = pd.read_csv("data/baseball.csv")

In [121]: print(baseball)
       id     player  year  stint team  lg   g   ab   r    h  ...   rbi   sb   cs  bb    so  ibb  hbp   sh   sf  gidp
0   88641  womacto01  2006      2  CHN  NL  19   50   6   14  ...   2.0  1.0  1.0   4   4.0  0.0  0.0  3.0  0.0   0.0
1   88643  schilcu01  2006      1  BOS  AL  31    2   0    1  ...   0.0  0.0  0.0   0   1.0  0.0  0.0  0.0  0.0   0.0
..    ...        ...   ...    ...  ...  ..  ..  ...  ..  ...  ...   ...  ...  ...  ..   ...  ...  ...  ...  ...   ...
98  89533   aloumo01  2007      1  NYN  NL  87  328  51  112  ...  49.0  3.0  0.0  27  30.0  5.0  2.0  0.0  3.0  13.0
99  89534  alomasa02  2007      1  NYN  NL   8   22   1    3  ...   0.0  0.0  0.0   0   3.0  0.0  0.0  0.0  0.0   0.0

[100 rows x 23 columns]

可以使用 info 函数显示汇总信息

In [122]: baseball.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   id      100 non-null    int64  
 1   player  100 non-null    object 
 2   year    100 non-null    int64  
 3   stint   100 non-null    int64  
 4   team    100 non-null    object 
 5   lg      100 non-null    object 
 6   g       100 non-null    int64  
 7   ab      100 non-null    int64  
 8   r       100 non-null    int64  
 9   h       100 non-null    int64  
 10  X2b     100 non-null    int64  
 11  X3b     100 non-null    int64  
 12  hr      100 non-null    int64  
 13  rbi     100 non-null    float64
 14  sb      100 non-null    float64
 15  cs      100 non-null    float64
 16  bb      100 non-null    int64  
 17  so      100 non-null    float64
 18  ibb     100 non-null    float64
 19  hbp     100 non-null    float64
 20  sh      100 non-null    float64
 21  sf      100 non-null    float64
 22  gidp    100 non-null    float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.1+ KB

默认情况下,过宽的数据会换行打印,可以设置列宽 display.width 来控制

In [123]: pd.set_option("display.width", 40)  # default is 80

In [124]: pd.DataFrame(np.random.randn(3, 12))
Out[124]: 
         0         1         2         3         4   ...        7         8         9         10        11
0 -2.182937  0.380396  0.084844  0.432390  1.519970  ...  0.274230  0.132885 -0.023688  2.410179  1.450520
1  0.206053 -0.251905 -2.213588  1.063327  1.266143  ...  0.408204 -1.048089 -0.025747 -0.988387  0.094055
2  1.262731  1.289997  0.082423 -0.055758  0.536580  ... -0.034571 -2.484478 -0.281461  0.030711  0.109121

[3 rows x 12 columns]

还可以设置最大列宽 display.max_colwidth 来控制

In [125]: datafile = {
   .....:     "filename": ["filename_01", "filename_02"],
   .....:     "path": [
   .....:         "media/user_name/storage/folder_01/filename_01",
   .....:         "media/user_name/storage/folder_02/filename_02",
   .....:     ],
   .....: }
   .....: 

In [126]: pd.set_option("display.max_colwidth", 30)

In [127]: pd.DataFrame(datafile)
Out[127]: 
      filename                           path
0  filename_01  media/user_name/storage/fo...
1  filename_02  media/user_name/storage/fo...

In [128]: pd.set_option("display.max_colwidth", 100)

In [129]: pd.DataFrame(datafile)
Out[129]: 
      filename                                           path
0  filename_01  media/user_name/storage/folder_01/filename_01
1  filename_02  media/user_name/storage/folder_02/filename_02
DataFrame 列属性

如果 DataFrame 的列名是有效的 Python 变量名时,可以通过访问对象属性的方式提取对应的列

In [130]: df = pd.DataFrame({'foo1': np.random.randn(5),
   .....:                    'foo2': np.random.randn(5)})
   .....: 

In [131]: df
Out[131]: 
       foo1      foo2
0  1.171216 -0.858447
1  0.520260  0.306996
2 -1.197071 -0.028665
3 -1.066969  0.384316
4 -0.303421  1.574159

In [132]: df.foo1
Out[132]: 
0    1.171216
1    0.520260
2   -1.197071
3   -1.066969
4   -0.303421
Name: foo1, dtype: float64

相关文章

网友评论

    本文标题:Python 数据处理(五)

    本文链接:https://www.haomeiwen.com/subject/hxontltx.html