KEGG富集分析结果可视化

作者: 生信石头 | 来源:发表于2019-02-25 10:18 被阅读48次
    library(ggplot2)
    library(ggthemes)
    tab<-read.table("leaf.ori.IDs.keggEnrich.tab.final.xls",header=T,sep="\t")
    colnames(tab)
    tab<-tab[,c("Term.Name","MainClass",
                                               "GeneHitsInSelectedSet",
                                               "GeneHitsInBackground"
                                               )]
    head(tab)
    tab$richFactor<-tab$GeneHitsInSelectedSet/tab$GeneHitsInBackground
    
    tab<-tab[order(tab$richFactor,decreasing = T),]
    tab<-tab[order(tab$MainClass,decreasing = F),]
    
    tab$Term.Name<-factor(tab$Term.Name,levels=unique(as.character(tab$Term.Name)))
    p<-ggplot(tab,aes(x=Term.Name,y=richFactor))
    p+geom_bar(stat="identity",width=0.1)+geom_point(aes(color=MainClass),size=10)+
      geom_text(aes(label=GeneHitsInSelectedSet),alpha=I(0.8))+
      theme_bw() +
      theme(
        
        panel.border = element_blank(),
        panel.background = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(), # element_line(size = 0.8,color="darkgray"), # element_blank(),
        axis.line.x = element_line(colour = "black", size = 0.8),
        axis.line.y = element_line(colour = "black", size = 0.8),
        axis.ticks.x = element_line(size = 0.8),
        axis.ticks.y = element_line(size = 0.8),
        axis.text.x = element_text(
          angle = 90, hjust = 0, vjust = 0
        ),
       #  legend.position="NA",
        legend.key = element_blank(),
        legend.title = element_blank(),
        legend.text = element_text(size = 12, face = "bold"),
        legend.background = element_rect(fill = "transparent"),
        strip.background = element_rect(
          colour = "white", fill = "white",
          size = 0.2
        ),
        strip.text.x = element_text(size = 14),
        strip.text.y = element_text(size = 14),
        
        text = element_text(
          size = 14, 
          #family = "arial",
          face = "bold"
        ),
        plot.title = element_text(
          size = 16, 
          #family = "arial",
          face = "bold"
        )
      )+scale_color_pander()+xlab("KEGG Pathway")+ylab("Rich Factor")
    

    相关文章

      网友评论

        本文标题:KEGG富集分析结果可视化

        本文链接:https://www.haomeiwen.com/subject/jadwyqtx.html