一、题目
你打算利用空闲时间来做兼职工作赚些零花钱。
这里有 n
份兼职工作,每份工作预计从 startTime[i]
开始到 endTime[i]
结束,报酬为 profit[i]
。
给你一份兼职工作表,包含开始时间 startTime
,结束时间 endTime
和预计报酬 profit
三个数组,请你计算并返回可以获得的最大报酬。
注意,时间上出现重叠的 2 份工作不能同时进行。
如果你选择的工作在时间 X
结束,那么你可以立刻进行在时间 X
开始的下一份工作。
二、示例
2.1> 示例 1:
【输入】startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
【输出】120
【解释】我们选出第 1 份和第 4 份工作, 时间范围是 [1-3]+[3-6],共获得报酬 120 = 50 + 70。
2.2> 示例 2:
【输入】startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
【输出】150
【解释】我们选择第 1,4,5 份工作。 共获得报酬 150 = 20 + 70 + 60。
2.3> 示例 3:
【输入】startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
【输出】6
提示:
-
1
<= startTime.length == endTime.length == profit.length <=5 * 10^4
-
1
<= startTime[i] < endTime[i] <=10^9
-
1
<= profit[i] <=10^4
三、解题思路
根据题目描述,我们可以采用动态规划的方式对题目进行解答,首先,我们创建int dp[],其中dp[i]用来表示第i个兼职工作的最大报酬。那么对于A和B这两个兼职工作而言,有如下两种情况:
【情况1】A和B的工作时间重叠了,那么兼职工作要么选择A要么选择B。
【情况2】A和B的工作时间不重叠,那么兼职工作A和B都可以做。
那么针对上面的两种情况而言,我们首先将所有的工作按照endTime进行排序,这样,我们就可以方便的去获取最先完成的工作了。然后针对以上两种情况,进行报酬计算即可,我们以示例1为例,输入:startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
,具体的计算逻辑如下图所示:
四、代码实现
class Solution {
public int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
Work[] works = new Work[endTime.length];
for (int i = 0; i < works.length; i++)
works[i] = new Work(startTime[i], endTime[i], profit[i]);
Arrays.sort(works);
int dp[] = new int[works.length + 1];
dp[0] = 0; // 初始第一个虚拟的dp,报酬为0
for (int i = 1; i <= works.length; i++) {
int pre = 0;
for (int j = i - 1; j >= 0; j--) {
// 向前寻找“最近的”“已完成的"兼职工作
if (works[j].endTime <= works[i-1].startTime) {
pre = j + 1; break;
}
}
dp[i] = Math.max(dp[i - 1], dp[pre] + works[i-1].profit);
}
return dp[works.length];
}
/** 兼职工作实体类 */
class Work implements Comparable<Work> {
public int startTime, endTime, profit;
public Work(int startTime, int endTime, int profit) {
this.startTime = startTime;
this.endTime = endTime;
this.profit = profit;
}
public int compareTo(Work other) {
return Integer.compare(this.endTime, other.endTime);
}
}
}
今天的文章内容就这些了:
写作不易,笔者几个小时甚至数天完成的一篇文章,只愿换来您几秒钟的 点赞 & 分享 。
更多技术干货,欢迎大家关注公众号“爪哇缪斯” ~ \(o)/ ~ 「干货分享,每天更新」
网友评论