基本用法
启动采集器,将运行session环境内的参数都保存到文件里,后续就可以用
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
file_writer = tf.summary.FileWriter('./logs/1', sess.graph)
后续通过TensorBoard打开这个文件,查看这个session的模型,运行
tensorboard --logdir=./logs/1
打开浏览器,通常是通过本机的6006端口访问
tensorboard对模型归类
在session中,对模型做归类
with tf.name_scope("RNN_layers”):
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers)
with tf.name_scope(“RNN_layers”)
查看session文件效果如图
tensorboard name space
采集运行信息
with tf.name_scope('logits’):
softmax_w = tf.Variable(tf.truncated_normal((lstm_size, num_classes), stddev=0.1),
name=‘softmax_w’)
softmax_b = tf.Variable(tf.zeros(num_classes), name=‘softmax_b’)
logits = tf.matmul(output, softmax_w) + softmax_b
tf.summary.histogram('softmax_w', softmax_w)
tf.summary.histogram('softmax_b', softmax_b) #以直方图采集权重
….
merged = tf.summary.merge_all() #收集全部采集点
…..
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter('./logs/2/train', sess.graph)
….
summary, batch_loss, new_state, _ = sess.run([model.merged, model.cost,
model.final_state, model.optimizer],
feed_dict=feed) #运行采集点的收集器merge
….
train_writer.add_summary(summary, iteration) #采集到的信息写入文件
tensorboard histogram
比较模型的不同参数,调参用
epochs = 20
batch_size = 100
num_steps = 100
train_x, train_y, val_x, val_y = split_data(chars, batch_size, num_steps)
for lstm_size in [128,256,512]:
for num_layers in [1, 2]:
for learning_rate in [0.002, 0.001]:
log_string = 'logs/4/lr={},rl={},ru={}'.format(learning_rate, num_layers, lstm_size) #每一对参数写入一个文件
writer = tf.summary.FileWriter(log_string)
model = build_rnn(len(vocab),
batch_size=batch_size,
num_steps=num_steps,
learning_rate=learning_rate,
lstm_size=lstm_size,
num_layers=num_layers)
train(model, epochs, writer)#每个文件用采集器收集信息
对每个参数配置做记录,最终可以得到他们之间对比的图案
image
总结:
- 图形做归类:
with tf.name_scope('logits’):
- 埋点:
tf.summary.histogram('softmax_w', softmax_w)
- 打包点:
merged = tf.summary.merge_all()
- 设置读写文件:
train_writer = tf.summary.FileWriter('./logs/2/train', sess.graph)
- 运行时做记录:
train_writer.add_summary(summary, iteration)
关于我:
linxinzhe,全栈工程师,目前供职于某500强通信企业。人工智能,区块链爱好者。
GitHub:https://github.com/linxinzhe
欢迎留言讨论,也欢迎关注我~
我也会关注你的哦!
网友评论