12.逗号范畴

作者: Obj_Arr | 来源:发表于2020-12-01 11:02 被阅读0次

现在给出一种由给定范畴构建新范畴的普遍方法。这种方法在本书中会经常用到。

考虑两个函子F:A--C,G:B--C,逗号范畴定义为:

1.对象是三元组(A,f,B),A∈A,B∈B,f:FA--GB∈C

2.态射是序对(a,b)使交换图交换,a:A--A',b:B--B',分别为范畴A,B中的态射。

3.复合按分量定义

对于逗号范畴(F,G),有两个函子,以及一个正规自然变换。整个命题都在交换图上表示出来了。(F,G)的两个投影函子,到达生成他的两个范畴,这两个范畴本身又由选定的函子指向同一个范畴C,诱导出了一个自然变换,是范畴C中的态射。

这个图是一种结构,是许多数学对象满足的图,但是,不附加内容,仅仅从形式上看,实在是空洞无物,不知所云,所以初学范畴论需要大量的例子来填充。

当存在另一个范畴D满足这个交换图时,在(F,G)和D之间就存在一个函子,可经由这个函子使图交换。

这种性质称之为万有性质,这是因为范畴D在满足这些基本条件下可以是任意的,没有更多的约束。

逗号范畴的一个重要特例是,元素范畴。

下图大致说明了这种万有性质。

考虑范畴A到集合范畴的一个函子,F的元素范畴定义为:

1.对象是序对(A,a),A∈A是范畴A的一个对象,a∈FA是对象FA的一个元素

2.态射是范畴A中的箭头f:A--B并且满足Ff(a)=b

3.复合就是范畴A中的复合

??什么意思呢,干什么用的呢。也就是说,FA中的每个元素都可看作一个箭头。例如:f:(A,a)\to (A,a’)

记1为单对象范畴,则函子1将这唯一的对象映为单点集。也就是说范畴1可视为单点集生成的范畴的满子范畴。由于FA中的一个元素可以视为单点集到FA的射,元素范畴实际上就是一个逗号范畴。而遗忘函子就定义为对元素的遗忘,仅仅保留集合关系。

两个范畴的积是新的范畴:

1.对象,范畴A,B的对象组成的序对

2.态射,范畴A,B的态射组成的序对

3.复合,范畴A,B的复合诱导的,并按分量定义

就是前面交换图的特例,将逗号范畴具体化为积范畴。

万有性质,下面是个示意图。

考虑单对象的常值函子,1范畴只有一个射,所以逗号范畴同构于积范畴。

术语,定义在积范畴上的函子常称之为双函子,有两个变量的函子。


就到这了,今天有点急躁了,整个一节的内容强行看完,遗留了很多问题。元素范畴所谓的元素和射的关系没弄清楚,还有很多地方借着之前的记忆一带而过,没有去思考。还是要慢慢来。

相关文章

  • 12.逗号范畴

    现在给出一种由给定范畴构建新范畴的普遍方法。这种方法在本书中会经常用到。 考虑两个函子F:A--C,G:B--C,...

  • 40.逗号范畴的限制,第二章习题

    逗号范畴在1.6节介绍过了。 考虑两个完备范畴A,B和两个限制保持函子F:A---C,G:B---C。逗号范畴是完...

  • sqlmap从入门到精通-第七章-7-6 绕过WAF脚本-com

    12. commalessmid.py脚本 将payload中的逗号使用from for代替,用于过滤了逗号并且是...

  • 13.逗号范畴遗留问题

    首先是逗号范畴的结构 自然映射的复合 万有性质 万有性质中出现的自然映射的复合 元素范畴实质上也是逗号范畴。 积范...

  • 范畴

    今日话题:最近我们的城市遇到了极大的洪灾。灾后自救。有解放军还有各行各业的志愿者,大家怎么看志愿者? 微笑:作为志...

  • 范畴

    可控领域就是指有一些你能直接控制与影响的事物,不过有一些你无法影响的事物,譬如一个陌生人砸坏了你的车,这件事与你有...

  • 范畴

    谈起这个话题,有时候也非常的沉重。因为说这个自己先要有范畴,说的时候,如果没有太多的范畴,那有可能也不能令太多的人...

  • 他就上去了

    你觉得读带读带,逗号逗号逗号

  • 401 范畴与范畴化

    蓝色:幻境结束 红色:见识世界 Henri Tajfel书籍 Social identifications: A ...

  • 先验范畴和范畴化

    苏格拉底认为,人天生具备理性;柏拉图认为,理念的世界是客观永恒的,现实的感官物质世界只是理念世界的影子;康德试图调...

网友评论

    本文标题:12.逗号范畴

    本文链接:https://www.haomeiwen.com/subject/ldijwktx.html