OKHttp源码解析

作者: mecury | 来源:发表于2016-08-24 20:51 被阅读22142次

    前言:对于OkHttp我接触的时间其实不太长,一直都是使用Retrofit + OkHttp 来做网络请求的,但是有同学说面试的时候可能会问框架源码,这样光是会用是不够的,于是便萌生了通一通OkHttp源码的念头。经过大约一周的时间,源码看了个大概(说来惭愧,也就知道里面的原理),这里变向大家介绍一下我的所得,希望对大家能有所帮助。这里推荐两篇博文:OkHttp 官方教程解析 - 彻底入门 OkHttp 使用
    拆轮子系列:拆 OkHttp 前者能够让你入门OkHttp,后者能让你明白OkHttp的原理,我就是看的后者去看的源码,如果看我的不太懂,大家可以去看看上面的。同时,欢迎大家交流,提出意见,谢谢!

    总体流程

    下面的流程图是由上面的文章抄来的(自己画的图,用的visio)
    整个流程是,通过OkHttpClient将构建的Request转换为Call,然后在RealCall中进行异步或同步任务,最后通过一些的拦截器interceptor发出网络请求和得到返回的response
    将流程大概是这么个流程,大家可以有个大概的印象,继续向下看:

    OkHttp流程图.jpg

    为了让大家有更深的印象,我准备追踪一个GET网络请求的具体流程,来介绍在源码中发生了什么。

    GET请求过程

    这是利用OkHttp写一个Get请求步骤,这里是一个同步的请求,异步的下面也会说:

       //HTTP GET
        public String get(String url) throws IOException {
            //新建OKHttpClient客户端
            OkHttpClient client = new OkHttpClient();
            //新建一个Request对象
            Request request = new Request.Builder()
                    .url(url)
                    .build();
            //Response为OKHttp中的响应
            Response response = client.newCall(request).execute();
            if (response.isSuccessful()) {
                return response.body().string();
            }else{
                throw new IOException("Unexpected code " + response);
            }
        }
    

    OKHttpClient:流程的总控制者

    OkHttpClient的类设计图

    使用OkHttp的时候我们都会创建一个OkHttpClient对象:
    OkHttpClient client = new OkHttpClient();
    这是做什么的呢?看下builder里面的参数:

         final Dispatcher dispatcher;  //分发器
        final Proxy proxy;  //代理
        final List<Protocol> protocols; //协议
        final List<ConnectionSpec> connectionSpecs; //传输层版本和连接协议
        final List<Interceptor> interceptors; //拦截器
        final List<Interceptor> networkInterceptors; //网络拦截器
        final ProxySelector proxySelector; //代理选择
        final CookieJar cookieJar; //cookie
        final Cache cache; //缓存
        final InternalCache internalCache;  //内部缓存
        final SocketFactory socketFactory;  //socket 工厂
        final SSLSocketFactory sslSocketFactory; //安全套接层socket 工厂,用于HTTPS
        final CertificateChainCleaner certificateChainCleaner; // 验证确认响应证书 适用 HTTPS 请求连接的主机名。
        final HostnameVerifier hostnameVerifier;    //  主机名字确认
        final CertificatePinner certificatePinner;  //  证书链
        final Authenticator proxyAuthenticator;     //代理身份验证
        final Authenticator authenticator;      // 本地身份验证
        final ConnectionPool connectionPool;    //连接池,复用连接
        final Dns dns;  //域名
        final boolean followSslRedirects;  //安全套接层重定向
        final boolean followRedirects;  //本地重定向
        final boolean retryOnConnectionFailure; //重试连接失败
        final int connectTimeout;    //连接超时
        final int readTimeout; //read 超时
        final int writeTimeout; //write 超时 
    

    在这些声明的对象中可以看出来,几乎所有用到的类都和OkHttpClient有关系。事实上,你能够通过它来设置改变一些参数,因为他是通过建造者模式实现的,因此你可以通过builder()来设置。如果不进行设置,在Builder中就会使用默认的设置:

                dispatcher = new Dispatcher();
                protocols = DEFAULT_PROTOCOLS;
                connectionSpecs = DEFAULT_CONNECTION_SPECS;
                proxySelector = ProxySelector.getDefault();
                cookieJar = CookieJar.NO_COOKIES;
                socketFactory = SocketFactory.getDefault();
                hostnameVerifier = OkHostnameVerifier.INSTANCE;
                certificatePinner = CertificatePinner.DEFAULT;
                proxyAuthenticator = Authenticator.NONE;
                authenticator = Authenticator.NONE;
                connectionPool = new ConnectionPool();
                dns = Dns.SYSTEM;
                followSslRedirects = true;
                followRedirects = true;
                retryOnConnectionFailure = true;
                connectTimeout = 10_000;
                readTimeout = 10_000;
                writeTimeout = 10_000;
    

    看到这,如果你还不明白的话,也没关系,在OkHttp中只是设置用的的各个东西。真正的流程要从里面的newCall()方法中说起:

           /**
            *  Prepares the {@code request} to be executed at some point in the future.
            *  准备将要被执行的request
            */
            @Override
            public Call newCall(Request request) {
                return new RealCall(this, request);
            }
    

    当通过建造者模式创建了Request之后(这个没什么好说),紧接着就通过下面的代码来获得Response
    大家还记得上面做GET请求时的这句代码吧:
    Response response = client.newCall(request).execute();这就代码就开启了整个GET请求的流程:

    RealCall:真正的请求执行者。

    先看一下他的构造方法:

    protected RealCall(OkHttpClient client, Request originalRequest) {  
        this.client = client;    
        this.originalRequest = originalRequest;    
        this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client);
    }
    

    可以看到他传过来一个OkHttpClient对象和一个originalRequest(我们创建的Request)。
    接下来看它的execute()方法:

     @Override
        public Response execute() throws IOException {
            synchronized (this) {
                if (executed) throw new IllegalStateException("Already Executed"); //(1)
                executed = true;
            }
            try {
                client.dispatcher.executed(this);//(2)
                Response result = getResponseWithInterceptorChain();//(3)
                if (result == null) throw new IOException("Canceled");
                return result;
            }finally {
                client.dispatcher.finished(this);//(4)
            }
        }
    
    1. 检查这个 call是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 all#clone 方法进行克隆。
    2. 利用 client.dispatcher().executed(this) 来进行实际执行,dispatcher 是刚才看到的 OkHttpClient.Builder 的成员之一,它的文档说自己是异步 HTTP请求的执行策略,现在看来,同步请求它也有掺和。
    3. 调用 getResponseWithInterceptorChain() 函数获取 HTTP 返回结果,从函数名可以看出,这一步还会进行一系列“拦截”操作。
    4. 最后还要通知 dispatcher 自己已经执行完毕。
      dispatcher 这里我们不过度关注,在同步执行的流程中,涉及到 dispatcher 的内容只不过是告知它我们的执行状态,比如开始执行了(调用 executed),比如执行完毕了(调用 finished),在异步执行流程中它会有更多的参与。
      真正发出网络请求,解析返回结果的,还是 getResponseWithInterceptorChain
    //拦截器的责任链。
        private Response getResponseWithInterceptorChain() throws IOException {
            // Build a full stack of interceptors.
            List<Interceptor> interceptors = new ArrayList<>();
            interceptors.addAll(client.interceptors());     //(1)
            interceptors.add(retryAndFollowUpInterceptor);    //(2)
            interceptors.add(new BridgeInterceptor(client.cookieJar()));    //(3)
            interceptors.add(new CacheInterceptor(client.internalCache()));    //(4)
            interceptors.add(new ConnectInterceptor(client));    //(5)
            if (!retryAndFollowUpInterceptor.isForWebSocket()) {
                interceptors.addAll(client.networkInterceptors());    //(6)
            }
            interceptors.add(new CallServerInterceptor(
                    retryAndFollowUpInterceptor.isForWebSocket()));     //(7)
    
            Interceptor.Chain chain = new RealInterceptorChain(
                    interceptors, null, null, null, 0, originalRequest);
            return chain.proceed(originalRequest); //  <<=========开始链式调用
        }
    
    1. 在配置 OkHttpClient 时设置的 interceptors
    2. 负责失败重试以及重定向的 RetryAndFollowUpInterceptor
    3. 负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 BridgeInterceptor
    4. 负责读取缓存直接返回、更新缓存的 CacheInterceptor
    5. 负责和服务器建立连接的 ConnectInterceptor
    6. 配置 OkHttpClient 时设置的 networkInterceptors
    7. 负责向服务器发送请求数据、从服务器读取响应数据的 CallServerInterceptor
    8. return chain.proceed(originalRequest);中开启链式调用:

    RealInterceptorChain

     public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
          Connection connection) throws IOException {
        if (index >= interceptors.size()) throw new AssertionError();
    
        calls++;
    
        // If we already have a stream, confirm that the incoming request will use it.
        //如果我们已经有一个stream。确定即将到来的request会使用它
        if (this.httpCodec != null && !sameConnection(request.url())) {
          throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
              + " must retain the same host and port");
        }
    
        // If we already have a stream, confirm that this is the only call to chain.proceed().
        //如果我们已经有一个stream, 确定chain.proceed()唯一的call
        if (this.httpCodec != null && calls > 1) {
          throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
              + " must call proceed() exactly once");
        }
    
        // Call the next interceptor in the chain.
        //调用链的下一个拦截器
        RealInterceptorChain next = new RealInterceptorChain(
            interceptors, streamAllocation, httpCodec, connection, index + 1, request);
        Interceptor interceptor = interceptors.get(index);
        Response response = interceptor.intercept(next);
    
        // Confirm that the next interceptor made its required call to chain.proceed().
        if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
          throw new IllegalStateException("network interceptor " + interceptor
              + " must call proceed() exactly once");
        }
    
        // Confirm that the intercepted response isn't null.
        if (response == null) {
          throw new NullPointerException("interceptor " + interceptor + " returned null");
        }
    
        return response;
      }
    

    代码很多,但是主要是进行一些判断,主要的代码在这:

    // Call the next interceptor in the chain.
        //调用链的下一个拦截器
        RealInterceptorChain next = new RealInterceptorChain(
            interceptors, streamAllocation, httpCodec, connection, index + 1, request);    //(1)
        Interceptor interceptor = interceptors.get(index);     //(2)
        Response response = interceptor.intercept(next);    //(3)
    
    1. 实例化下一个拦截器对应的RealIterceptorChain对象,这个对象会在传递给当前的拦截器
    2. 得到当前的拦截器:interceptors是存放拦截器的ArryList
    3. 调用当前拦截器的intercept()方法,并将下一个拦截器的RealIterceptorChain对象传递下去
      **除了在client中自己设置的interceptor,第一个调用的就是retryAndFollowUpInterceptor **

    RetryAndFollowUpInterceptor:负责失败重试以及重定向

    直接上代码

    @Override 
    public Response intercept(Chain chain) throws IOException {
            Request request = chain.request();
            streamAllocation = new StreamAllocation(
                    client.connectionPool(), createAddress(request.url()));
            int followUpCount = 0;
            Response priorResponse = null;
            while (true) {
                if (canceled) {
                    streamAllocation.release();
                    throw new IOException("Canceled");
                }
    
                Response response = null;
                boolean releaseConnection = true;
                try {
                    response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null);    //(1)
                    releaseConnection = false;
                } catch (RouteException e) {
                    // The attempt to connect via a route failed. The request will not have been sent.
                    //通过路线连接失败,请求将不会再发送
                    if (!recover(e.getLastConnectException(), true, request)) throw e.getLastConnectException();
                    releaseConnection = false;
                    continue;
                } catch (IOException e) {
                    // An attempt to communicate with a server failed. The request may have been sent.
                    // 与服务器尝试通信失败,请求不会再发送。
                    if (!recover(e, false, request)) throw e;
                    releaseConnection = false;
                    continue;
                } finally {
                    // We're throwing an unchecked exception. Release any resources.
                    //抛出未检查的异常,释放资源
                    if (releaseConnection) {
                        streamAllocation.streamFailed(null);
                        streamAllocation.release();
                    }
                }
    
                // Attach the prior response if it exists. Such responses never have a body.
                // 附加上先前存在的response。这样的response从来没有body
                // TODO: 2016/8/23 这里没赋值,岂不是一直为空?
                if (priorResponse != null) { //  (2)
                    response = response.newBuilder()
                            .priorResponse(priorResponse.newBuilder()
                                    .body(null)
                                    .build())
                            .build();
                }
    
                Request followUp = followUpRequest(response); //判断状态码 (3)
                if (followUp == null){
                    if (!forWebSocket) {
                        streamAllocation.release();
                    }
                    return response;
                }
    
                closeQuietly(response.body());
    
                if (++followUpCount > MAX_FOLLOW_UPS) {
                    streamAllocation.release();
                    throw new ProtocolException("Too many follow-up requests: " + followUpCount);
                }
    
                if (followUp.body() instanceof UnrepeatableRequestBody) {
                    throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
                }
    
                if (!sameConnection(response, followUp.url())) {
                    streamAllocation.release();
                    streamAllocation = new StreamAllocation(
                            client.connectionPool(), createAddress(followUp.url()));
                } else if (streamAllocation.codec() != null) {
                    throw new IllegalStateException("Closing the body of " + response
                            + " didn't close its backing stream. Bad interceptor?");
                }
    
                request = followUp;
                priorResponse = response;
            }
        }
    
    
    1. 这里是最关键的代码,可以看出在response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null);中直接调用了下一个拦截器,然后捕获可能的异常来进行操作
    2. 这里没看太懂,有点坑,以后补
    3. 这里对于返回的response的状态码进行判断,然后进行处理

    BridgeInterceptor:

    负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 。

    @Override 
    public Response intercept(Chain chain) throws IOException {
        Request userRequest = chain.request();
        Request.Builder requestBuilder = userRequest.newBuilder();
    
        //检查request。将用户的request转换为发送到server的请求
        RequestBody body = userRequest.body();     //(1)
        if (body != null) {
          MediaType contentType = body.contentType();
          if (contentType != null) {
            requestBuilder.header("Content-Type", contentType.toString());
          }
    
          long contentLength = body.contentLength();
          if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
          } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
          }
        }
    
        if (userRequest.header("Host") == null) {
          requestBuilder.header("Host", hostHeader(userRequest.url(), false));
        }
    
        if (userRequest.header("Connection") == null) {
          requestBuilder.header("Connection", "Keep-Alive");
        }
          // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
        // the transfer stream.
        //GZIP压缩
        boolean transparentGzip = false;
        if (userRequest.header("Accept-Encoding") == null) {
          transparentGzip = true;
          requestBuilder.header("Accept-Encoding", "gzip");
        }
    
        List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
        if (!cookies.isEmpty()) {
          requestBuilder.header("Cookie", cookieHeader(cookies));
        }
    
        if (userRequest.header("User-Agent") == null) {
          requestBuilder.header("User-Agent", Version.userAgent());
        }
    
        Response networkResponse = chain.proceed(requestBuilder.build());   //(2)
    
        HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers()); //(3)
    
        Response.Builder responseBuilder = networkResponse.newBuilder()
            .request(userRequest);
    
        if (transparentGzip
            && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
            && HttpHeaders.hasBody(networkResponse)) {
          GzipSource responseBody = new GzipSource(networkResponse.body().source());
          Headers strippedHeaders = networkResponse.headers().newBuilder()
              .removeAll("Content-Encoding")
              .removeAll("Content-Length")
              .build();
          responseBuilder.headers(strippedHeaders);
          responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
        }
    
        return responseBuilder.build();
      }
    
    1. 在(1)和(2)之间,BridgeInterceptor对于request的格式进行检查,让构建了一个新的request
    2. 调用下一个interceptor来得到response
    3. (3)下面就是对得到的response进行一些判断操作,最后将结果返回。
    
    @Override 
    public Response intercept(Chain chain) throws IOException {
        Response cacheCandidate = cache != null        //=============(1)
            ? cache.get(chain.request()) //通过request得到缓存
            : null;
    
        long now = System.currentTimeMillis();
    
        CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); //根据request来得到缓存策略===========(2)
        Request networkRequest = strategy.networkRequest;
        Response cacheResponse = strategy.cacheResponse;
    
        if (cache != null) {
          cache.trackResponse(strategy);
        }
    
        if (cacheCandidate != null && cacheResponse == null) { //存在缓存的response,但是不允许缓存
          closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it. 缓存不适合,关闭
        }
    
        // If we're forbidden from using the network and the cache is insufficient, fail.
          //如果我们禁止使用网络,且缓存为null,失败
        if (networkRequest == null && cacheResponse == null) {
          return new Response.Builder()
              .request(chain.request())
              .protocol(Protocol.HTTP_1_1)
              .code(504)
              .message("Unsatisfiable Request (only-if-cached)")
              .body(EMPTY_BODY)
              .sentRequestAtMillis(-1L)
              .receivedResponseAtMillis(System.currentTimeMillis())
              .build();
        }
    
        // If we don't need the network, we're done.
        if (networkRequest == null) {  //没有网络请求,跳过网络,返回缓存
          return cacheResponse.newBuilder()
              .cacheResponse(stripBody(cacheResponse))
              .build();
        }
    
        Response networkResponse = null;
        try {
          networkResponse = chain.proceed(networkRequest);//网络请求拦截器    //======(3)
        } finally {
          // If we're crashing on I/O or otherwise, don't leak the cache body.
            //如果我们因为I/O或其他原因崩溃,不要泄漏缓存体
          if (networkResponse == null && cacheCandidate != null) {
            closeQuietly(cacheCandidate.body());
          }
        }
    
        // If we have a cache response too, then we're doing a conditional get.========(4)
          //如果我们有一个缓存的response,然后我们正在做一个条件GET
        if (cacheResponse != null) {
          if (validate(cacheResponse, networkResponse)) { //比较确定缓存response可用
            Response response = cacheResponse.newBuilder()
                .headers(combine(cacheResponse.headers(), networkResponse.headers()))
                .cacheResponse(stripBody(cacheResponse))
                .networkResponse(stripBody(networkResponse))
                .build();
            networkResponse.body().close();
    
            // Update the cache after combining headers but before stripping the
            // Content-Encoding header (as performed by initContentStream()).
              //更新缓存,在剥离content-Encoding之前
            cache.trackConditionalCacheHit();
            cache.update(cacheResponse, response);
            return response;
          } else {
            closeQuietly(cacheResponse.body());
          }
        }
    
        Response response = networkResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        if (HttpHeaders.hasBody(response)) {    // =========(5)
          CacheRequest cacheRequest = maybeCache(response, networkResponse.request(), cache);
          response = cacheWritingResponse(cacheRequest, response);
        }
    
        return response;
      }
    
    
    1. 首先,根据request来判断cache中是否有缓存的response,如果有,得到这个response,然后进行判断当前response是否有效,没有将cacheCandate赋值为空。
    2. 根据request判断缓存的策略,是否要使用了网络,缓存 或两者都使用
    3. 调用下一个拦截器,决定从网络上来得到response
    4. 如果本地已经存在cacheResponse,那么让它和网络得到的networkResponse做比较,决定是否来更新缓存的cacheResponse
    5. 缓存未经缓存过的response

    ConnectInterceptor:建立连接

     @Override 
    public Response intercept(Chain chain) throws IOException {
           RealInterceptorChain realChain = (RealInterceptorChain) chain;
           Request request = realChain.request();
           StreamAllocation streamAllocation = realChain.streamAllocation();
    
           // We need the network to satisfy this request. Possibly for validating a conditional GET.
           boolean doExtensiveHealthChecks = !request.method().equals("GET");
           HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
           RealConnection connection = streamAllocation.connection();
    
           return realChain.proceed(request, streamAllocation, httpCodec, connection);
      }
    

    实际上建立连接就是创建了一个HttpCodec对象,它将在后面的步骤中被使用,那它又是何方神圣呢?它是对 HTTP 协议操作的抽象,有两个实现:Http1CodecHttp2Codec,顾名思义,它们分别对应 HTTP/1.1HTTP/2 版本的实现。

    在Http1Codec中,它利用 Okio 对Socket的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对java.io和java.nio进行了封装,让我们更便捷高效的进行 IO 操作。

    而创建HttpCodec对象的过程涉及到StreamAllocation、RealConnection,代码较长,这里就不展开,这个过程概括来说,就是找到一个可用的RealConnection,再利用RealConnection的输入输出(BufferedSourceBufferedSink)创建HttpCodec对象,供后续步骤使用。

    NetworkInterceptors

    配置OkHttpClient时设置的 NetworkInterceptors。

    CallServerInterceptor:发送和接收数据

     @Override public Response intercept(Chain chain) throws IOException {
        HttpCodec httpCodec = ((RealInterceptorChain) chain).httpStream();
        StreamAllocation streamAllocation = ((RealInterceptorChain) chain).streamAllocation();
        Request request = chain.request();
    
        long sentRequestMillis = System.currentTimeMillis();
        httpCodec.writeRequestHeaders(request);
    
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {   //===(1)
          Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
          BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
          request.body().writeTo(bufferedRequestBody);
          bufferedRequestBody.close();
        }
    
        httpCodec.finishRequest();
    
        Response response = httpCodec.readResponseHeaders()     //====(2)
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    
        if (!forWebSocket || response.code() != 101) {
          response = response.newBuilder()
              .body(httpCodec.openResponseBody(response))
              .build();
        }
    
        if ("close".equalsIgnoreCase(response.request().header("Connection"))
            || "close".equalsIgnoreCase(response.header("Connection"))) {
          streamAllocation.noNewStreams();
        }
    
        int code = response.code();
        if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
          throw new ProtocolException(
              "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
        }
    
        return response;
      }
    
    1. 检查请求方法,用Httpcodec处理request
    2. 进行网络请求得到response
    3. 返回response

    总结

    前面说了拦截器用了责任链设计模式,它将请求一层一层向下传,知道有一层能够得到Resposne就停止向下传递,然后将response向上面的拦截器传递,然后各个拦截器会对respone进行一些处理,最后会传到RealCall类中通过execute来得到esponse

    异步请求的流程:

    异步get请求示例如下:

    
    private final OkHttpClient client = new OkHttpClient();
    
      public void run() throws Exception {
        Request request = new Request.Builder()
            .url("http://publicobject.com/helloworld.txt")
            .build();
    
        client.newCall(request).enqueue(new Callback() {
          @Override 
          public void onFailure(Call call, IOException e) {
            e.printStackTrace();
          }
    
          @Override 
          public void onResponse(Call call, Response response) throws IOException {
            if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);
    
            Headers responseHeaders = response.headers();
            for (int i = 0, size = responseHeaders.size(); i < size; i++) {
              System.out.println(responseHeaders.name(i) + ": " + responseHeaders.value(i));
            }
    
            System.out.println(response.body().string());
          }
        });
      }
    

    由代码中client.newCall(request).enqueue(Callback),开始我们知道client.newCall(request)方法返回的是RealCall对象,接下来继续向下看enqueue()方法:

       //异步任务使用
        @Override 
        public void enqueue(Callback responseCallback) {
            synchronized (this) {
                if (executed) throw new IllegalStateException("Already Executed");
                executed = true;
            }
            client.dispatcher().enqueue(new AsyncCall(responseCallback));
        }
    

    调用了上面我们没有详细说的Dispatcher类中的enqueue(Call )方法.接着继续看:

    synchronized void enqueue(AsyncCall call) {
            if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
                runningAsyncCalls.add(call);
                executorService().execute(call);
            } else {
                readyAsyncCalls.add(call);
            }
        }
    

    如果中的runningAsynCalls不满,且call占用的host小于最大数量,则将call加入到runningAsyncCalls中执行,同时利用线程池执行call;否者将call加入到readyAsyncCalls中。runningAsyncCallsreadyAsyncCalls是什么呢?看下面:

    /** Ready async calls in the order they'll be run. */
    private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>(); //正在准备中的异步请求队列
    
    /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
    private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>(); //运行中的异步请求
    
    /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
    private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>(); //同步请求
    

    call加入到线程池中执行了。现在再看AsynCall的代码,它是RealCall中的内部类:

    //异步请求
        final class AsyncCall extends NamedRunnable {
            private final Callback responseCallback;
    
            private AsyncCall(Callback responseCallback) {
                super("OkHttp %s", redactedUrl());
                this.responseCallback = responseCallback;
            }
    
            String host() {
                return originalRequest.url().host();
            }
    
            Request request() {
                return originalRequest;
            }
    
            RealCall get() {
                return RealCall.this;
            }
    
            @Override protected void execute() {
                boolean signalledCallback = false;
                try {
                    Response response = getResponseWithInterceptorChain();
                    if (retryAndFollowUpInterceptor.isCanceled()) {
                        signalledCallback = true;
                        responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
                    } else {
                        signalledCallback = true;
                        responseCallback.onResponse(RealCall.this, response);
                    }
                } catch (IOException e) {
                    if (signalledCallback) {
                        // Do not signal the callback twice!
                        Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
                    } else {
                        responseCallback.onFailure(RealCall.this, e);
                    }
                } finally {
                    client.dispatcher().finished(this);
                }
            }
        }
    

    AysncCall中的execute()中的方法,同样是通过Response response = getResponseWithInterceptorChain();来获得response,这样异步任务也同样通过了interceptor,剩下的流程就和上面一样了。

    结语:

    看到这,不知道你是否明白了OkHttp的请求过程,如果有什么问题或意见,欢迎私信。

    参考

    1. OkHttp 官方教程解析 - 彻底入门 OkHttp 使用
    2. 拆轮子系列:拆 OkHttp

    相关文章

      网友评论

      • 阡陌昏晨:楼主你好 想问一下 是不是当一个拦截器拦截了OriginRequest后就真正去执行网络访问请求了 然后得到响应Response 然后一步一步往上面传递?
      • looooker:写的通俗易懂,很详细~
        RetryAndFollowUpInterceptor 负责失败重试以及重定向 的第二步priorResponse是指上一次循环的相应,在方法体最下面有赋值。主要是为了重定向。如果发现上一次请求的响应有重定向,则给当前响应的priorResponse赋值,并且响应体为空。
        looooker:第三步,是判断当前响应有没有重定向,如果没有,结束循环
      • Android程序员老鸦:楼主 你最后那个CallServerInterceptor:发送和接收数据的调用没写清楚,因为在chain里proceed()不会按照之前处理的方式去处理最后一个Interceptor
        Android程序员老鸦:抱歉 是我没看明白 原来最后的interceptor没再调用proceed()方法,即已经得到了response,跳出了递归
      • 38ec9b2d871a:不错,之前看了很多文章,不是特别明白,看完你这篇,终于有点开窍了
      • mrFessible:文字和代码混在一起,可读性不好啊:fearful:
      • GaryLi:写的很明白,已收藏
      • 8324a7eda376:不错不错,收藏了。

        推荐下,源码圈 300 胖友的书单整理:http://t.cn/R0Uflld


        12a033ef755a:写的不错,谢谢博主;已收藏~
      • 无名指666:感谢分享,从本文章获取良多,最近再看okhttp源码,想写个博客记录一下,会借鉴博主的内容可以么,还有您在RetryAndFollowUpInterceptor位置标注的 2,您应该早就弄清楚了,while(true)最下面priorResponse赋值了。感谢您的分享!
      • KingJA:请问博主AsyncCall 中的execute()是如何调用的,没看到调用时机
        pigCoder:线程池会调用NamedRunnable中的run方法,而NamedRunnable中的run方法会调用他子类AsyncCall 中的execute方法
      • wodezhuanshu:很好正在看源码 有问题可以互相讨论
      • Labradors:最近也在看okhttp源码,写的很不错。
      • 乘风破浪的程序员:楼主,你知道get 请求为什么返回的是okhttp3.internal.http.RealResponseBody@421df100么?response.body() 不应该返回json 数据么
        mecury:@hante 不会直接得到json数据的。http里面没有解析json的代码,使用的时候需要自己配置解析库,或者直接解析。至于返回的responsebody,他可以简单返回几种类型,如:bytes、string,这里你可以看源码的ResponseBody文件
      • 吕中宜:写得很详细很用心,mark并感谢博主
        mecury:@吕中宜 哈哈·
      • ibrucekong:mark 及时雨
        mecury:@ibrucekong 哈哈

      本文标题:OKHttp源码解析

      本文链接:https://www.haomeiwen.com/subject/mjyxjttx.html