动手学深度学习(八) NLP 文本预处理

作者: 致Great | 来源:发表于2020-02-18 20:08 被阅读0次

文本预处理

文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:

  1. 读入文本
  2. 分词
  3. 建立字典,将每个词映射到一个唯一的索引(index)
  4. 将文本从词的序列转换为索引的序列,方便输入模型

读入文本

我们用一部英文小说,即H. G. Well的Time Machine,作为示例,展示文本预处理的具体过程。

import collections
import re

def read_time_machine():
    with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f:
        lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
    return lines


lines = read_time_machine()
print('# sentences %d' % len(lines))
# sentences 3221

分词

我们对每个句子进行分词,也就是将一个句子划分成若干个词(token),转换为一个词的序列。

def tokenize(sentences, token='word'):
    """Split sentences into word or char tokens"""
    if token == 'word':
        return [sentence.split(' ') for sentence in sentences]
    elif token == 'char':
        return [list(sentence) for sentence in sentences]
    else:
        print('ERROR: unkown token type '+token)

tokens = tokenize(lines)
tokens[0:2]
[['the', 'time', 'machine', 'by', 'h', 'g', 'wells', ''], ['']]

建立字典

为了方便模型处理,我们需要将字符串转换为数字。因此我们需要先构建一个字典(vocabulary),将每个词映射到一个唯一的索引编号。

class Vocab(object):
    def __init__(self, tokens, min_freq=0, use_special_tokens=False):
        counter = count_corpus(tokens)  # : 
        self.token_freqs = list(counter.items())
        self.idx_to_token = []
        if use_special_tokens:
            # padding, begin of sentence, end of sentence, unknown
            self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
            self.idx_to_token += ['', '', '', '']
        else:
            self.unk = 0
            self.idx_to_token += ['']
        self.idx_to_token += [token for token, freq in self.token_freqs
                        if freq >= min_freq and token not in self.idx_to_token]
        self.token_to_idx = dict()
        for idx, token in enumerate(self.idx_to_token):
            self.token_to_idx[token] = idx

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]

def count_corpus(sentences):
    tokens = [tk for st in sentences for tk in st]
    return collections.Counter(tokens)  # 返回一个字典,记录每个词的出现次数

我们看一个例子,这里我们尝试用Time Machine作为语料构建字典

vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[0:10])
[('', 0), ('the', 1), ('time', 2), ('machine', 3), ('by', 4), ('h', 5), ('g', 6), ('wells', 7), ('i', 8), ('traveller', 9)]

将词转为索引

使用字典,我们可以将原文本中的句子从单词序列转换为索引序列

for i in range(8, 10):
    print('words:', tokens[i])
    print('indices:', vocab[tokens[i]])
words: ['the', 'time', 'traveller', 'for', 'so', 'it', 'will', 'be', 'convenient', 'to', 'speak', 'of', 'him', '']
indices: [1, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0]
words: ['was', 'expounding', 'a', 'recondite', 'matter', 'to', 'us', 'his', 'grey', 'eyes', 'shone', 'and']
indices: [20, 21, 22, 23, 24, 16, 25, 26, 27, 28, 29, 30]

用现有工具进行分词

我们前面介绍的分词方式非常简单,它至少有以下几个缺点:

  1. 标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
  2. 类似“shouldn't", "doesn't"这样的词会被错误地处理
  3. 类似"Mr.", "Dr."这样的词会被错误地处理

我们可以通过引入更复杂的规则来解决这些问题,但是事实上,有一些现有的工具可以很好地进行分词,我们在这里简单介绍其中的两个:spaCyNLTK

下面是一个简单的例子:

text = "Mr. Chen doesn't agree with my suggestion."

spaCy:

import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp(text)
print([token.text for token in doc])
['Mr.', 'Chen', 'does', "n't", 'agree', 'with', 'my', 'suggestion', '.']

NLTK:

from nltk.tokenize import word_tokenize
from nltk import data
data.path.append('/home/kesci/input/nltk_data3784/nltk_data')
print(word_tokenize(text))
['Mr.', 'Chen', 'does', "n't", 'agree', 'with', 'my', 'suggestion', '.']

相关文章

  • 动手学深度学习(八) NLP 文本预处理

    文本预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常...

  • 2022-02-15

    《动手学深度学习》环境搭建教程指南—windows10系统 本文在李沐博士的《动手学深度学习》 — 动手学深度学习...

  • mxnet:如何对多维NDArray按维度操作?

    参考: 动手学深度学习第3.6.3章节.

  • NLP 文本预处理utils

    1、中文标点 2、strip() 的正则表达式版本 示例:去除字符串首尾的中文标点 参考文献 https://bl...

  • 动手学深度学习(十三) NLP机器翻译

    机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机...

  • 动手学深度学习

    线性回归 一.主要内容包括: 1.线性回归的基本要素 2.线性回归模型从零开始的实现 3.线性回归模型使用pyto...

  • 动手学深度学习-Task02

    任务名称 文本预处理;语言模型;循环神经网络基础 学习心得 1、鉴于自己从事NLP已有一段时间,因此该部分还是稍微...

  • 动手学深度学习(十一) NLP循环神经网络

    循环神经网络 本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的...

  • 用于NLP的Python:使用Keras进行深度学习文本生成

    原文链接:http://tecdat.cn/?p=8448 文本生成是NLP的最新应用程序之一。深度学习技术已用于...

  • 线性回归的实现

    选自 李沐 《动手学深度学习》 第三章。 3.3 线性回归的简洁实现 随着深度学习框架的发展,开发深度学习应用变得...

网友评论

    本文标题:动手学深度学习(八) NLP 文本预处理

    本文链接:https://www.haomeiwen.com/subject/musnfhtx.html