论文是
image.pngGlobal burden of lung cancer attributable to ambient fine particulate matter pollution in 204 countries and territories, 1990–2019
一位公众号读者留言问到下图的实现方法
image.png这个图涉及到3个知识点
- 一个是堆积柱形图
- 一个是两条折线图之间填充颜色
- 还有一个是双坐标轴的实现办法
这三个知识点分成2期推文分别来介绍,今天的推文是第二期,介绍带置信区间的折线图和双Y轴
堆积柱形图的代码
library(ggplot2)
library(readxl)
dat01<-read_excel("example-1.xlsx",
sheet = "Sheet1")
ggplot()+
geom_bar(data=dat01,
aes(x=x,y=y1,fill=group),
position = "stack",
stat="identity")+
scale_fill_manual(values = c("#2271b6","#6bafd6",
"#9ecbe2","#d7e3ef",
"#cb181c","#fb6a4b",
"#fd9272","#fee1d3"))+
theme_bw()+
labs(x="Age",y="Numbers of deaths")+
scale_y_continuous(breaks = seq(-35000,35000,5000),
labels = abs(seq(-35000,35000,5000)))+
scale_x_continuous(breaks = 1:15,
labels = unique(dat01$xlabel),
expand = c(0,0),
limits = c(0.3,15.7))
image.png
带置信区间的折线图
这里置信区间是提前算好的
数据
image.pngdat02<-read_excel("example-1.xlsx",
sheet = "Sheet2")
dat02
ggplot()+
geom_ribbon(data=dat02,
aes(x=x,ymin=y1,ymax=y3,
fill=group,color=group),
alpha=0.5)+
geom_line(data=dat02,
aes(x=x,y=y2,
color=group),
show.legend = FALSE)+
scale_fill_manual(values = c("#2271b6","#cb181c"))+
scale_color_manual(values = c("#2271b6","#cb181c"))+
theme_bw()
image.png
堆积柱形图和折线图叠加到一起
因为两组数据量级不一样,我们需要对其中一个数据集进行转化,这里我们选择将折线图的数据放大
dat01 %>%
filter(group=="A") %>%
group_by(xlabel) %>%
summarise(y=sum(y1)) -> dat01.a
dat01 %>%
filter(group=="B") %>%
group_by(xlabel) %>%
summarise(y=sum(y1)) -> dat01.b
dat01.b
dat02 %>%
filter(group=="A") -> dat02.a
newdat.a<-data.frame(y=dat01.a$y,
x=dat02.a$y2)
lm(y~x,data=newdat.a)
对原始数据转化
dat02 %>%
mutate(across(c(y1,y2,y3),~.x*100-1000)) -> new.dat02
最后是作图代码
ggplot()+
geom_bar(data=dat01,
aes(x=x,y=y1,fill=group),
position = "stack",
stat="identity")+
scale_fill_manual(values = c("#2271b6","#6bafd6",
"#9ecbe2","#d7e3ef",
"#cb181c","#fb6a4b",
"#fd9272","#fee1d3"),
name="BBB")+
theme_bw()+
labs(x="Age",y="Numbers of deaths")+
scale_y_continuous(breaks = seq(-35000,35000,5000),
labels = abs(seq(-35000,35000,5000)),
sec.axis = sec_axis(~(.+1000)/100,
name="Mortality Rate per 1000",
breaks = seq(-400,400,40)))+
scale_x_continuous(breaks = 1:15,
labels = unique(dat01$xlabel),
expand = c(0,0),
limits = c(0.3,15.7))+
ggnewscale::new_scale_fill()+
geom_ribbon(data=new.dat02,
aes(x=x,ymin=y1,ymax=y3,
fill=group,color=group),
alpha=0.2)+
geom_line(data=new.dat02,
aes(x=x,y=y2,
color=group),
show.legend = FALSE)+
scale_fill_manual(values = c("#00b0eb","#e20612"),
name="AAA")+
scale_color_manual(values = c("#2271b6","#cb181c"),
name="AAA")+
theme_bw()
image.png
示例数据和代码可以在公众号 小明的数据分析笔记本 找到获取方式
欢迎大家关注我的公众号
小明的数据分析笔记本
小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!
网友评论