Android的异步消息处理机制

作者: yjiyjige | 来源:发表于2016-06-05 00:02 被阅读238次

    异步消息处理线程的一般思路

    要实现一个异步消息处理线程需要解决如下问题:

    • 每个线程应该有一个消息队列,用于对消息进行排队
    • 线程执行体中有一个无限的循环,不断地从消息队列中取出消息,并根据消息的来源,去调用相应的处理方法
    • 其他线程可以给队列添加消息

    Android通过四个主要类来实现:

    • Message 封装执行的方法或携带要处理的消息参数
    • MessageQueue 处理消息的排队
    • Looper 不断地从MessageQueue中取出消息派发给相应的处理器
    • Handler 通过它给MessageQueue发送Message,在其中执行相应的处理方法

    Looper

    一个Looper中持有一个MessageQueue对象,而一个线程只有一个Looper,这是怎么做到的呢?

    先看Looper的构造方法:

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    

    我们并不能自己创建Looper对象,而是通过Looper的静态方法prepare

    public static void prepare() {
        prepare(true);
    }
    
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
    

    原来是通过线程局部变量来实现的,保证了一个线程只能有一个Looper。当Looper创建完了之后,就要开始消息队列的循环了:

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
    
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
    
            msg.target.dispatchMessage(msg);
    
            msg.recycleUnchecked();
        }
    }
    

    可以看到,整个过程其实很简单,调用MessageQueue的next方法,取出消息队列中的一个消息,然后调用其targetdispatchMessageMessage方法,最后回收消息。

    Message

    Message是一个携带信息的对象,一个Message可以携带以下东西:

    • int what 一般是用来表明该Message用处的标识
    • int arg1int arg2 两个简单的int值
    • Object obj 一个对象
    • Bundle data 一个Bundle对象,通过setData方法设置

    对于Message内部运行,有如下成员变量:

    /*package*/ int flags; // Message的状态
    
    /*package*/ long when; // Message的执行时间
    
    /*package*/ Handler target; // 处理该消息的Handler
    
    /*package*/ Runnable callback; // 携带一个Runnable对象
    
    // sometimes we store linked lists of these things
    /*package*/ Message next; // 下一个Message
    

    Message提供了一个public的构造方法,但并不建议我们直接使用,而是通过各种obtain方法来获取,因为Messge类本身维护了一个对象池,避免重复创建Message对象,它是怎么做到的呢?

    private static final Object sPoolSync = new Object();
    private static Message sPool;
    private static int sPoolSize = 0;
    
    private static final int MAX_POOL_SIZE = 50;
    
    /**
     * Return a new Message instance from the global pool. Allows us to
     * avoid allocating new objects in many cases.
     */
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }
    

    可以看到sPool就是这个池的头指针,每次从Message链表中取出一个Message返回,然后指向下一个Message。而这个Message链表是在recycleUnckecked方法中构建出来的:

    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;
    
        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }
    

    回收完的Message插入到链表头部,设计得太巧妙了!!!

    Handler

    对于一个Handler,通常我们有三种用法:

    • 使用sendXxx去发送一个Message
    • 重写handleMessage或者设置Callback来处理发送给Handler的Message
    • 使用postXxx去异步执行一个Runnable

    从上图可以看到,其实各种postXxxsendXxx最终都会调用到Handler的enqueueMessage方法。比如postXxx会把Runnable赋值给Message的callback

    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }
    
    private static Message getPostMessage(Runnable r, Object token) {
        Message m = Message.obtain();
        m.obj = token;
        m.callback = r;
        return m;
    }
    

    而Handler的enqueueMessage最终调用MessageQueue的enqueueMessage

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    

    还记得Looper中的msg.target.dispatchMessage(msg);吗?Message中的target就是与之关联的Handler,dispatchMessage的实现如下:

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
    
    private static void handleCallback(Message message) {
        message.callback.run();
    }
    

    如果这个Message带的是一个Runnable,就直接调用run方法了,否则交给Callback或自身的handlerMessage去处理。

    MessageQueue

    MessageQueue的重要方法:

    • next 取出队列中的下一个消息
    • enqueueMessage 将Message加入到消息队列中
    • removeMessages 从队列中移除Message

    先看enqueueMessage怎么实现:

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) { // 找到Message的插入位置
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

    其中的mMessage相当于队列的头指针,而重点在于理解如何把Message插入到队列中的合适位置。

    next方法很长,但做的事主要是去遍历消息队列,找出当前时间可以执行的Message。如队列空了,就阻塞;如果下一个Message的执行时间还未到,则会等待nextPollTimeoutMillis的时间再取出执行。

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }
    
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) { // 消息的执行时间未到
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else { // 没有更加的消息,要进入阻塞了
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
    
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
            }
    
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
    

    removeMessages方法比较简单,分为两步处理:

    • 移除消息头中所有符合的Message,mMessage指针也要跟着移动。
    • 遍历剩下的消息队列找出所有符合的Message,并移除。

    以其中一个为例:

    void removeMessages(Handler h, Runnable r, Object object) {
        if (h == null || r == null) {
            return;
        }
    
        synchronized (this) {
            Message p = mMessages;
    
            // Remove all messages at front.
            while (p != null && p.target == h && p.callback == r
                   && (object == null || p.obj == object)) {
                Message n = p.next;
                mMessages = n;
                p.recycleUnchecked();
                p = n;
            }
    
            // Remove all messages after front.
            while (p != null) {
                Message n = p.next;
                if (n != null) {
                    if (n.target == h && n.callback == r
                        && (object == null || n.obj == object)) {
                        Message nn = n.next;
                        n.recycleUnchecked();
                        p.next = nn;
                        continue;
                    }
                }
                p = n;
            }
        }
    }
    

    相关文章

      网友评论

        本文标题:Android的异步消息处理机制

        本文链接:https://www.haomeiwen.com/subject/pqzldttx.html