美文网首页理科生的果壳知曰
使用「多样性预测定理」预测球赛结果

使用「多样性预测定理」预测球赛结果

作者: 章彦博 | 来源:发表于2014-08-25 17:13 被阅读524次

前段时间,知乎网举办了世界杯比分预测大赛。

在两轮竞猜之中,我一个完全不懂球的人都稳定在前200名,在好友圈内一直保持第一,虽然最后没有拿到奖,但我构建的数学模型总还是有一些参考价值的。

首先,普及一个定理:

「多样性预测定理」(Diversity Prediction Theorem

看论文点这里(复制到浏览器中):

http://www.cscs.umich.edu/~spage/ONLINECOURSE/prediction.pdf

写成数学公式,就是这样:(这是一个恒等式)

equation.png

多样性预测定理
其中,Real,就是实际值,x的平均值作为预测值,我们可以看到,其意义就是:

误差之平方 = 每一项误差的平方平均值 - 方差

(按照其原话,便是:Collective Error = Average Individual Error − Prediction Diversity

大家可以用下面的 Mathematica 代码,或者 Wolfram Language 检验:

D\[Sigma]2[list_, R_] := 

With[{Alist = Total[list]/Length[list], n = Length[list]}, 1/n \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(n\)]

\*SuperscriptBox[\((list[[i]] - R)\), \(2\)]\) - 1/n \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(n\)]

\*SuperscriptBox[\((list[[i]] - Alist)\), \(2\)]\)]

上面的式子虽然是一个可以严格证明的恒等式,统计学家亦做过一个实验,他们让一群人猜测一头牛的质量,每个人都可以自由猜测,猜测出来的结果,很多人预测结果非常离谱(这以为着),然而其预测值的平均值却非常接近牛的质量(误差小于0.5%)。

较为不严格的说,减小预测最终误差的方法在于增大方差

知乎公开了所有的投票数据,我们可以利用它,一个简单的想法便是:取所有用户投票的平均值

这样就获得了最初的算法:

2ba83ee270323f02f2e9e8b5ce694105_r.jpg

这样的算法,成功预测了第一轮前半部分 70% 的比赛结果。对,只要获得大量知友的投票数据即可。

当然,如果想让结果看起来更加舒服,可以写成这样:

8e78f1081c9262506466c4569a7a1932_r.jpg

比如这是刚开始巴西对阵克罗地亚的比赛:

In[5]:= data001 = {176, 701, 1240, 917, 160, 82, 25, 18, 14};

In[6]:= GoAuto[data001]

Out[6]= -2

模型表现不错。

当然,我们要注意已有的投票数对于知友投票的影响。

多样性预测定理的另一个表述便是:不同的人,对某一事物进行预测,他们使用不同的模型,而最终加权平均的结果,会更加接近真实值。

但是一些知友使用的无用的模型,比如随机投票、从众、求异,这样没有营养的模型对预测结果是没有帮助的,我们要将之剔除。所以我们要获得不同时段的投票数据。

比如这一场巴西 VS 智利的比赛,两次获得的投票数据为:

data6271 = {36, 398, 2033, 1813, 125, 110, 25, 10, 34};

data627x = {129, 1172, 5572, 4931, 367, 364, 80, 40, 164};

data627y = {199, 1658, 7604, 6775, 622, 562, 133, 79, 252};

我们将新的数据,除以旧的数据,得到这样有趣的图像:

fa3edbb09ac1a88a1e0368d4c028e46b_r.jpg

大家似乎并不愿意从众,反而是愿意求异,我们将这样的「无用」的模型剔除。获得了这样的结果:

b0701e0fa06220f8099abe1d87c53188_b.jpg 6b27042db5b967ce7f84f97f0a305198_r.jpg

代码部分


「多样性预测定理」的思想非常简单,但结果还是相对比较好的(至少我这个不懂球的能两次都保持在前200),下面是一些代码(Mathematica/Wolfram Language

基本预测:

GoBasic[list_] := {-4, -3, -2, -1, 0, 1, 2, 3, 4}.list/Total[list]

Aver[list_] := Total[list]/Length[list]

Si2[list_] := With[{aver = Aver[list], n = Length[list]}, \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(n\)]
\*SuperscriptBox[\((list[\([\)\(i\)\(]\)] - aver)\), \(2\)]\)/n]

GoAuto[list_] := Round[GoBasic[list]]

剔除无用模型:

Show[ListLinePlot[N[data627x/data6271], PlotRange -> {{0, 9}, {0, 5}},
   Mesh -> All], 
 Plot[a (x - b)^2 + c /. root1, {x, 0, 9}, PlotStyle -> Red]]

正态分布拟合:

Gauss[list_, p_] := 
 With[{fit = 
    FindFit[list/Total[list], 
     1/(Sqrt[2 \[Pi]] \[Sigma]) E^(-(p - \[Mu])^2/(
      2 \[Sigma]^2)), {\[Sigma], \[Mu]}, p]}, 
  Show[ListPlot[list/Total[list], PlotStyle -> Red], 
   Plot[E^(-((p - \[Mu])^2/(2 \[Sigma]^2)))/(
     Sqrt[2 \[Pi]] \[Sigma]) /. fit, {p, 0, 10}, Filling -> Bottom], 
   PlotRange -> All]]

多重正态分布拟合:

Fitcomplex[list_, prelist_] := 
 FindFit[list/
  Total[list], {u*1/(Sqrt[2 \[Pi]] \[Sigma]) E^(-(p - \[Mu])^2/(
     2 \[Sigma]^2)) + (1 - u)*1/(Sqrt[2 \[Pi]] \[Sigma]2)
      E^(-(p - \[Mu]2)^2/(2 \[Sigma]2^2)), 0 < u < 1, 0 < \[Mu] < 9, 
   0 < \[Mu]2 < 9}, {{\[Mu], prelist[[1]]}, {\[Mu]2, 
    prelist[[2]]}, \[Sigma], \[Sigma]2, u}, p]

Plotcomplex[list_, getlist_] := 
 Show[Plot[(u E^(-((p - \[Mu])^2/(2 \[Sigma]^2))))/(
     Sqrt[2 \[Pi]] \[Sigma]) + ((1 - u) E^(-((p - \[Mu]2)^2/(
       2 \[Sigma]2^2))))/(Sqrt[2 \[Pi]] \[Sigma]2) /. getlist, {p, 0, 
    10}, Filling -> Bottom], 
  ListPlot[list/Total[list], PlotStyle -> Red], 
  Plot[((1 - u) E^(-((p - \[Mu]2)^2/(2 \[Sigma]2^2))))/(
    Sqrt[2 \[Pi]] \[Sigma]2) /. getlist, {p, 0, 9}, Filling -> Bottom,
    PlotRange -> All], 
  Plot[(u E^(-((p - \[Mu])^2/(2 \[Sigma]^2))))/(
    Sqrt[2 \[Pi]] \[Sigma]) /. getlist, {p, 0, 9}, Filling -> Bottom, 
   PlotRange -> All]]

拟合的结果就是这样的,但结果与一开始的模型差别不大,就没有怎么用:

4bfee2c7b00ef87cf82bcca1a8e7aac6_b.jpg

相关文章

  • 使用「多样性预测定理」预测球赛结果

    前段时间,知乎网举办了世界杯比分预测大赛。 在两轮竞猜之中,我一个完全不懂球的人都稳定在前200名,在好友圈内一直...

  • 用Python预测球赛结果

    NBA总决赛刚刚结束,翘首以盼的世界杯又开始了。 每个不曾熬夜看球的凌晨,都是对球赛的辜负。 一、实验介绍 1.1...

  • 倍投缩短连挂最大值和减少投注最大额的方法

    上期我们谈了一个寻找偏差的方法,就是使用大量的随机预测合成,统计这些预测数据的结果,使用统计结果替代单一预测结果去...

  • 人工智能如何影响预测性分析应用

    使用人工智能(AI)进行预测分析可帮助企业根据历史数据预测未来结果,从而提高运营效率和结果。 预测分析是使用数据、...

  • 机器学习入门(二):模型的获取和改进

    应用机器学习技术”这件事情,具体到微观的行为,其实就是:使用机器学习模型来预测数据,得到预测结果。然后,预测结果可...

  • 数据科学36 | 机器学习-预测

    基于模型的预测Model based production 基本思想:假设数据遵循特定概率模型,使用贝叶斯定理基于...

  • bert的使用

    1.预测词很容易实现,预测定理性的词语效果比较好,预测句子中间的词语效果比较好。当预测其他领域的语句和句子末尾的词...

  • “活在当下”vs“活在未来”

    对未来进行预测那个预测需要时间才能得到结果笃定那个预测是正确的于是提前按照你预测的结果行动、选择、思考终于走到结果...

  • 贝叶斯定理

    贝叶斯定理有什么用? 在有限的信息下,能够帮助我们预测出概率。所有需要作出概率预测的地方都可以见到贝叶斯定理的影子...

  • 【r<-model】模型预测与置信区间

    线性回归的主要目的是根据一个或多个预测变量(自变量)预测一个结果值。本文会讨论如何使用R来预测新观测值的结果。你也...

网友评论

    本文标题:使用「多样性预测定理」预测球赛结果

    本文链接:https://www.haomeiwen.com/subject/qsqytttx.html