如何看待开普勒猜想首次被匹兹堡大学数学家形式化证明?
How do you think Kepler's conjecture was first formalized by mathematicians at the University of Pittsburgh?Professor of Pittsburgh University proves Kepler's conjecture by geometric computer. It's not beautiful. Here's a mathematical proof.N维开普勒猜想的数学证明与计算公式:n维单元体的开普勒填充波波函数X(n)=sinwX(n)Mathematical proof and calculation formula of N-dimensional Kepler conjecture: Kepler filled wave function X(n)=sinwX(n) of n-dimensional element body
匹兹堡大学教授通过几何计算机证明开普勒猜想,并不漂亮,下面给出一个数理证明,请指正:Mathematical proof and calculation formula of N-dimensional Kepler conjecture: Kepler filled wave function X(n)=sinwX(n) of n-dimensional element body
N维开普勒猜想的数学证明与计算公式:n维单元体的开普勒填充波波函数X(n)=sinwX(n)
匹兹堡大学教授Thmas Hales通过几何法证明了3维开普勒猜想,首先谈谈三维开普勒猜想。
开普勒猜想:三维球堆的最大密度为
.
球堆就是……一堆大小相同的球。当然数学上还要啰嗦几句:球是刚球,互相之间不相交。密度的意思大家应该都可以大致想象。严格的说,假设有一个边长为
立方体的箱子中最多可以放
个体积为
的小球,那么球堆的密度定义为极限
. 我们可以先考虑一个二维的对比。平面上的圆堆能达到的最大密度是下面这种情况:
图1
大家可以自己验证一下其密度为
. 可以先算图中的六边形面积。 三维空间中,我们知道一种很漂亮的堆积,见下图:
图2
这个堆积中,球心形成的晶格在物理化学上叫做面心立方晶系(FCC)。这个堆积的密度就是
. 开普勒猜想说,这就是三维球堆的最密堆积。势能最小。 这个问题是由 Johannes Kepler 于 1611 年在一篇讲雪花的论文中发散出来的。传言他朋友是一个军方人员的助理,受命研究炮弹堆积的最佳方案。Kepler 的论文是拉丁语的,网上可以找到原文。 开普勒没有给出答案。200 多年后,高斯于 1831 年证明,如果规定球心构成一个晶格,那么面心立方堆积是所有晶格中最密集的堆积方式。也就是说,如果开普勒的猜想是错的,存在一个密度更大的堆积,那么这个堆积一定不是个漂亮的晶格,而是个比较无规律的堆积。
1900 年,开普勒猜想被列为希尔伯特的 23 个问题的第 18 个。
下一次进展出现在 1953 年,Fejes Tóth 证明对于给定的构型,找出最大密度只需要有限步。1958 年,Rogers 证明三维球堆的最大密度小于 78%,吸引许多数学家着手缩小这个数字,收效甚微。Rogers 在其论文的第二页写
... many mathematicians believe, and all physicists know, that the density cannot exceed 0.7404...
许多数学家都相信,所有物理学家都知道,(三维球堆的)密度不可能超过 0.7404... 我承认这让数学家们看上去很「科盲」。没错,各种实践,包括日常生活中的和科学研究中的现象,都支持 0.7404... 就是最高密度,只有数学家们不知道。Milnor 曾评价说:
The problem is unsolved. This is a scandalous situation since the (presumably) correct answer has been known since the time of Gauss. All that is missing is a proof.
这个问题还没有解决。这个情况让人羞愧,因为(应该是)正确的答案在高斯的时候就知道了。缺的仅仅是一个证明。
为什么都这么明显了,数学家还要坚持说「不知道」呢?我们来看另一个类似的问题。Kelvin 猜想:如果用肥皂膜将空间分割成体积相同的胞格,那么在所有方法中,Kelvin 提出的结构使用的肥皂膜面积最小。这个猜想 1887 年由 Kelvin 提出,100 多年中没有出现任何反例,大家也都相信猜想是正确的,直到 1993 年计算机发现 Weaire–Phelan 结构。这也是一个不那么漂亮的结构,使用了两种不同的胞格。匹兹堡大学从几何结构的角度给出一个开普勒猜想的三维证明,并不漂亮。不能计算二维及n维体的开普勒堆积密度。
定理1:广义皮克定理 面积的定义和最大填充面积的计算 计算地图上某一地区的面积(比如北京),一般的方法是: 先用直尺在地图上画等大的方格,越细密越精确,然后我们数数落在“北京”范围内的方格有多少个(更聪明的方法是数十字交叉点),然后再乘以每个小方格的面积,最后别忘了乘比例尺的平方,于是就得到北京地区面积的近似值。(以上做法的依据可以查看皮克定理。) 将上面的过程抽像化、符号化,就得到“面积”的定义: 对于区域
可以没有重叠地将n个面积
覆盖,将这
个面积之和记作
,若序列 的上确界存在: S(N)即为区域
的“面积”。 实际上,在测度论中,我们称上面所定义的面积为内测度。 仿造内测度,还可以定义外测度,即是区域
被一系列矩形所覆盖且没有重叠的部分,那么这些矩形面积之和的下确界就是外测度。 而真正的面积的定义是:当区域
的内测度与外测度等于同一数值S 时,S 就是
的测度,也就是面积。 通俗地说,就是我们从“内”和从“外”两种方法去逼近同一区域,这个过程的极限就是所求的面积。单位面积测度称为广义格点面积测度,n称为面积S(n)的格点数,如若格点面积
则二维平面的面积可用广义皮克定理计算.显而易见,可用两次使用广义皮克定理计算二维平面的开普勒填充密度
定理2:皮克定理推论 1. 面积比等于格点数的比
2.假设面积
格点数相等,格点单元面积不等,则有
定理3:考察开普勒堆积的特点,有如下结论:错位循环,开普勒堆积是三角波的叠加;或单位圆正弦波:单位圆逐个填充被填充面积单元1——单位圆填充面积的增加,可以用它的半径旋转来表示,一个单位圆的填充分解为单位圆微小扇形面积的增加:正弦波,错位循环仍可用频率为
的正弦波表示,
为单位圆半径.
二维平面单元体填充路径的三角波
由图不难看出,开普勒填充密度可通过单元体的周期三角波
计算。
为偶函数,余弦分量幅值为
展开式为
幅值频谱相位频谱
展开式也可以为
二维开普勒余弦波可推广至三维:三维波频率
归一化证明:设三维开普勒堆积在XY平面XZ平面YZ平面的填充频率分别为
不难证明
或者
假设假设经典意义上的3维开普勒填充(填充单元相同,单位球,被填充三维正立方体)频率为
,则2维开普勒填充(填充单元相同,单位正圆,被填充二维正方形)频率
令填充单位单元体直径为1,则
计算三角波幅频
二维填充最大密度
设3维开普勒填充最大密度为X,余弦波cosX填满X,X/cosX=1,非0 填充与填充体半径有关,显然X取弧度制,解之,得x=0.739085,二维圆周率 在三维退化为表体比3/r(球体半径r),立方体的表体比恒等于3。显然,
弧度制计算
计算结果更接近x=0.7404.....较好理解的表述为最大密度
X 为开普勒解.
维体开普勒填充密度
.已经证明,3维
n维开普勒解,n维空间成立证明:
1.开普勒填充一定是周期填充,任何正常的周期为T的函数
都可分解为无限个正弦和余弦函数的代数和,矢量分解的概念可推广到n维空间,堆叠一定形成正交矢量集,开普勒堆叠的正交函数集为归一化正交函数集,无论如何分解,最大填充率
不变。
2.用一个在区间
上的正交函数集
中各函数的线性组合就可逼近定义在
区间上的信号
,即
,三角函数集
是一个正交函数集,具体可写为
,
,式中
称为基波角频率,由于
为周期信号,且其周期
与三角函数集中各函数的周期
相同,故上述展开式在
区间也是成立的。
3.开普勒堆积函数具有以下特点:(1)在一个周期内只有有限个间断点。(2)在一个周期内有有限个极值点。(3)在一个周期内函数绝对可积,即
.(4)一般周期信号都满足这些条件
4.矢量分解的概念可以推广到n维空间,由n个相互正交 的矢量组成一个n维,则开普勒填充从相同单元的填充推广至任意单元体(维度形状任意,单元体可以不同)对任意维度体的泛周期填充,从而开普勒n维猜想成立.
开普勒填充路径波总是可以分解为4列干涉波,假设填充单元为颜色,4种颜色完成填充开普勒填充路径波总是可以分解为4列干涉波,假设填充单元为颜色,4种颜色完成填充
图3.1维到3维的填充密度比较,是逐步递减过程。图片来源:Henry Cohn,IAP Math Lecture Series
开普勒猜想的证明
n维空间填充定理:1.一维线
,二维面
,三维体
,四维空间
......,n维空间
......,
被完全填充:填充
一定垂直于被填充
,势能最小,
是
的测地线(证明从略)
n维空间完全填充的定义:非0填充γ一定垂直于被填充Ω,γ是Ω的测地线时成为完全填充(填充密度最大)
2.
的测地线是
,平行线是
(证明从略),数学上,
同解。
3.0点填充可100%填充.
4.公式推广到n维空间,不同的维度数有不同的填充频率
(证明从略),填充与填充体半径相关,计算采用半径定义的弧度制,3维限制“静止填充”计算采用“广义弧度制”,取
,二维圆周率
在三维空间退化为表体比,立方体的表体比恒等于3,三维球体的表体比等于3/R,R为球体半径,通过定义
,换算后,公式计算可推广到n维空间,
的定义:令
半径为1,径“1”维度体
比测地线
维圆周率
,
表示
维空间的填充频率。一维:
二维圆周:
,S为圆周长,r为半径
三维球体:
,
为表面积,
为曲率半径,
表示体积
三维立方体:
,
为表面积,
表示体积,有界平面的中心填充证明从略。n维维度修正换算见下图。不同维度空间的外来填充体最大填充密度x与它自身的几何测地线填充频率y负相关,它们有如下数学关系
,( 二维证明:
) .
开普勒猜想的通项公式:
,
维度修正系数,
,证明从略。x的值可以联立方程
计算,
,R属于实数,也可从图4直接标注。
图6
开普勒猜想在工程技术上的应用和不同维度填充密度计算
1.三维立体开普勒填充密度
,有多个计算途径,三维立体二维平面开普勒填充密度
,它们满足证明的换算关系,从平面开普勒堆积密度值
回算三维开普勒堆积最大堆积密度
,大于面心立方堆积密度
,存在一个密度更大的堆积,那么这个堆积一定不是个漂亮的晶格,而是个比较无规律的堆积。从3维立体开普勒堆积
计算x=0.739085,回算二维平面开辟类堆积密度要小于
,显然与边界条件限制有关。
2.最大填充密度与稳定性有关,开普勒猜想公式在颗粒压实,振动频率选择,建筑物构筑物结构稳定验算等方面有广泛的应用。
3.任何工程计算均可傅里叶分解为一系列周期函数,凡是周期函数均可模型化为一个开普勒填充,用公式
验算该架构的设备满负荷时空密率,相同的流水线,相同的生产总量,相同的分量分布,有一个确定的满负荷时空密率;相同条件下因为不同的架构函数影响有不同的满负荷时空密率值的大小。最大值为
.
4.
对sinx泰勒展开再除x有:sinx/x=1-x^2/3!+x^4/5!+…+(-1)^(m-1)x^(2m-2)/(2m-1)!+o(1) 两边求积分有:∫sinx/x·dx =[x/1-x^3/3·3!+x^5/5·5!+…+(-1)^(m-1)x^(2m-1)/(2m-1)(2m-1)!+o(1)] 从0无穷定积分 则0x(x→00)(里x大常数任意取)代入上式右边并相减通过计算机即得结果, 另一做法:考虑广义二重积分 I=∫∫ e^(-xy) ·sinxdxdy D 其D = [0,+∞)×[0,+∞) 今按两种同次序进行积分得 I=∫sinxdx ∫e^(-xy)dy 0 +∞ 0 +∞ =∫sinx·(1/x)dx 0 +∞ 另方面,交换积分顺序有:I=∫∫ e^(-xy) ·sinxdxdy D =∫dy ∫e^(-xy)·sinxdx 0 +∞ 0 +∞ =∫dy/(1+y^2)=arc tan+∞-arc tan0 0 +∞ =π/2 所以:∫sinx·(1/x)dx= π/2 ,(0 +∞)
开普勒填充密度的全空间积分为 .
网友评论