四元数是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念。四元数的乘法不符合交换律。
明确地说,四元数是复数的不可交换延伸。如把四元数的集合考虑成多维实数空间的话,四元数就代表着一个四维空间,相对于复数为二维空间。
基础
定义
复数是由实数加上元素 i 组成,其中

相似地,四元数都是由实数加上三个元素 i、j、k 组成,**而且它们有如下的关系:

每个四元数都是 1、i、j 和 k 的线性组合,即是四元数一般可表示为

要把两个四元数相加只需将相类的系数加起来就可以,就像复数一样。至于乘法则可跟随以下的乘数表:

四元数的单位元的乘法构成了八阶四元群,

例子
假设:


那么:






四元数是除法环的一个例子。除了没有乘法的交换律外,除法环与域是相类的。特别地,乘法的结合律仍旧存在、非零元素仍有唯一的逆元素。
四元数形成一个在实数上的四维结合代数(事实上是除法代数),并包括复数,但不与复数组成结合代数。四元数(以及实数和复数)都只是有限维的实数结合除法代数。
四元数的不可交换性往往导致一些令人意外的结果,例如四元数的 n-阶多项式能有多于 n 个不同的根。例如方程式



一个四元数


而它的绝对值则是非负实数,定义为:

注意


四元数的乘逆可以

透过使用距离函数





群旋转
如四元数和空间转动条目所释,非零四元数的乘法群在R3
的实部为零的部分上的共轭作用可以实现转动。单位四元数(绝对值为1的四元数)若实部为cos(t),它的共轭作用是一个角度为2t的转动,转轴为虚部的方向。四元数的优点是:
表达式无奇点(和例如欧拉角之类的表示相比)
比矩阵更简炼(也更快速)
单位四元数的对可以表示四维空间中的一个转动。
所有单位四元数的集合组成一个三维球S3
和在乘法下的一个群(一个李群)。S3
是行列式为1的实正交3×3正交矩阵的群SO(3,R)的双重复盖,因为每两个单位四元数通过上述关系对应于一个转动。群S3
和SU(2)同构,SU(2)是行列式为1的复酉2×2矩阵的群。令A为形为a + bi + cj + dk的四元数的集合,其中a, b, c和d或者都是整数或者都是分子为奇数分母为2的有理数。集合A是一个环,并且是一个格。该环中存在24个四元数,而它们是施莱夫利符号为{3,4,3}的正二十四胞体的顶点。
以矩阵表示四元数
有两种方法能以矩阵表示四元数,并以矩阵之加法、乘法应用于四元数之加法、乘法。
第一种是以二阶复数矩阵表示。若 h = a + bi + cj + dk 则它的复数形式为:

这种表示法有如下优点:
所有复数 (c = d = 0) 就相应于一个实矩阵。
四元数的绝对值的平方就等于矩阵的行列式。
四元数的共轭值就等于矩阵的共轭转置。
对于单位四元数 (|h| = 1) 而言,这种表示方式给了四维球体和SU(2)之间的一个同型,而后者对于量子力学中的自旋的研究十分重要。(请另见泡利矩阵)
第二种则是以四阶实数矩阵表示:

其中四元数的共轭等于矩阵的转置。
四元数运算
四元数运算在电动力学与广义相对论中有广泛的应用。四元数可以用来取代张量表示。有时候采用带有复数元素之四元数会比较容易,导得结果不为除法代数之形式。然而亦可结合共轭运算以达到相同的运算结果。
此处仅讨论具有实数元素之四元数,并将以两种形式来描述四元数。其中一种是矢量与标量的结合,另一形式两个创建量(constructor)与双矢量(bivector;i、j与k)的结合。
定义两个四元数:


其中


加、乘和一般函数
四元数加法:p + q
跟复数、矢量和矩阵一样,两个四元数之和需要将不同的元素加起来:

加法遵循实数和复数的所有交换律和结合律。
四元数乘法:pq
两个四元数之间的非可换乘积通常被格拉斯曼称为积,这个积上面已经简单介绍过,它的完整型态是:


由于四元数乘法的非可换性,pq并不等于qp。格拉斯曼积常用在描述许多其他代数函数。qp乘积的矢量部分是:

四元数点积: p · q
点积也叫做欧几里得内积,四元数的点积等同于一个四维矢量的点积。点积的值是p中每个元素的数值与q中相应元素的数值的乘积的和。这是四元数之间的可换积,并返回一个标量。

点积可以用格拉斯曼积的形式表示:

这个积对于从四元数分离出一个元素有用。例如,i项可以从p中这样提出来:

四元数外积:Outer(p,q)
欧几里得外积并不常用; 然而因为外积和内积的格拉斯曼积形式的相似性.它们总是一同被提及:



四元数偶积:Even(p,q)
四元数偶积也不常用,但是它也会被提到,因为它和奇积的相似性。它是纯对称的积;因此,它是完全可交换的。



四元数叉积:p × q
四元数叉积也称为奇积。它和矢量叉积等价,并且只返回一个矢量值:


四元数转置:p−1
四元数的转置通过p−1
p = 1被定义。它定义在上面的定义一节,位于属性之下(注意变量记法的差异)。其建构方式相同于复倒数(complex inverse)之构造:

一个四元数的自身点积是个标量。四元数除以一个标量等效于乘上此标量的倒数,而使四元数的每个元素皆除以此一除数。
四元数除法:p−1
q
四元数的不可换性导致了 p−1
q 和 qp−1
的不同。这意味着除非p是一个标量,否则不能使用q/p这一符号。
四元数标量部:Scalar(p)
四元数的标量部分可以用前面所述的点积来分离出来:

四元数矢量部:Vector(p)
四元数的矢量部分可以用外积提取出来,就象用点积分离标量那样:

四元数模:|p|
四元数的绝对值是四元数到原点的距离。

四元数符号数:sgn(p)
一复数之符号数乃得出单位圆上,一个方向与原复数相同之复数。四元数的符号数亦产生单位四元数:

四元数辐角:arg(p)
辐角函数可找出一4-矢量四元数偏离单位标量(即:1)之角度。此函数输出一个标量角度。

幂和对数
因为四元数有除法,所以幂和对数可以定义。
自然幂:



三角函数
正弦:



双曲函数
双曲正弦:



反双曲函数
反双曲正弦:



反三角函数
将这些被放到最后,是因为需要先定义四元数中的反双曲三角函数。
反正弦函数:



网友评论