美文网首页单细胞冷知识和小技能GSEA
跟着Cell学单细胞转录组分析(十三):单细胞GSVA分析|这个

跟着Cell学单细胞转录组分析(十三):单细胞GSVA分析|这个

作者: KS科研分享与服务 | 来源:发表于2022-04-07 08:53 被阅读0次

    之前我们发过GSVA分析(有了这个包,猪的GSEA和GSVA分析也不在话下(第一集)【后续来了】有了这个包,猪的GSEA和GSVA分析也不在话下(第二集)),接着单细胞系列,重新说一下GSVA分析。

    首先是数据集的问题,通常只做人和小鼠的,想要做其他物种的,苦于没有数据集,不过这里说的这个包,即使猪的GSVA分析也都可以做。

    这里我们以小鼠为示例,也是常见物种的GSVA分析,结合单细胞的数据!GSVA其实就是对功能富集的量化,然后进行差异分析,寻找感兴趣的通路在样本中的变化。不同于常规的GO、KEGG受差异基因阈值的影响,GSEA受实验分组的影响,GSVA能够对通路量化,看感兴趣通路在多组之间的变化!

    首先加载和安装必要的包并加载单细胞数据。

    library(Seurat)
    #source("http://bioconductor.org/biocLite.R")
    #biocLite("GSVA")
    library(GSVA)
    library(tidyverse)
    library(ggplot2)
    library(clusterProfiler)
    library(org.Mm.eg.db)
    library(dplyr)
    
    immuneT <- subset(immune, celltype=="T cells")#提取我们需要分析的细胞类型
    immuneT <- as.matrix(immuneT@assays$RNA@counts)#提取count矩阵
    meta <- immuneT@meta.data[,c("orig.ident", "sex", "age", "stim", "samples")]#分组信息,为了后续作图
    

    之前一直苦于MSigDB数据库只有人的数据集,没有小鼠和其他物种的,网上也有教程如何根据基因同源性进行转化的,但是很麻烦,也不一定成功。还好有一个新的数据包被发现了,简直是福音---msigdbr包,可以做GSEA和GSVA。

    
    #install.packages("msigdbr")
    library(msigdbr)
    msigdbr_species() #可以看到,这个包涵盖了20个物种
    # A tibble: 20 x 2
       species_name                 species_common_name                                   
       <chr>                        <chr>                                                 
     1 Anolis carolinensis          Carolina anole, green anole                           
     2 Bos taurus                   bovine, cattle, cow, dairy cow, domestic cattle, dome~
     3 Caenorhabditis elegans       roundworm                                             
     4 Canis lupus familiaris       dog, dogs                                             
     5 Danio rerio                  leopard danio, zebra danio, zebra fish, zebrafish     
     6 Drosophila melanogaster      fruit fly                                             
     7 Equus caballus               domestic horse, equine, horse                         
     8 Felis catus                  cat, cats, domestic cat                               
     9 Gallus gallus                bantam, chicken, chickens, Gallus domesticus          
    10 Homo sapiens                 human                                                 
    11 Macaca mulatta               rhesus macaque, rhesus macaques, Rhesus monkey, rhesu~
    12 Monodelphis domestica        gray short-tailed opossum                             
    13 Mus musculus                 house mouse, mouse                                    
    14 Ornithorhynchus anatinus     duck-billed platypus, duckbill platypus, platypus     
    15 Pan troglodytes              chimpanzee                                            
    16 Rattus norvegicus            brown rat, Norway rat, rat, rats                      
    17 Saccharomyces cerevisiae     baker's yeast, brewer's yeast, S. cerevisiae          
    18 Schizosaccharomyces pombe 9~ NA                                                    
    19 Sus scrofa                   pig, pigs, swine, wild boar                           
    20 Xenopus tropicalis           tropical clawed frog, western clawed frog    
    查看下小鼠的基因集,是否与MSigDB数据库一样
    
    mouse <- msigdbr(species = "Mus musculus")
    mouse[1:5,1:5]
    # A tibble: 5 x 5
      gs_cat gs_subcat      gs_name        gene_symbol entrez_gene
      <chr>  <chr>          <chr>          <chr>             <int>
    1 C3     MIR:MIR_Legacy AAACCAC_MIR140 Abcc4            239273
    2 C3     MIR:MIR_Legacy AAACCAC_MIR140 Abraxas2         109359
    3 C3     MIR:MIR_Legacy AAACCAC_MIR140 Actn4             60595
    4 C3     MIR:MIR_Legacy AAACCAC_MIR140 Acvr1             11477
    5 C3     MIR:MIR_Legacy AAACCAC_MIR140 Adam9             11502
    table(mouse$gs_cat) #查看目录,与MSigDB一样,包含9个数据集
    ###C1      C2      C3      C4      C5      C6      C7      C8       H 
      20049  533767  795972   92353 1248327   30556  988358  109328    7411
    

    本例中,我们要分析GO,因为mouse文件包含了所有的基因集,所以要查看GO在哪里,然后将需要的文件提出来。

    table(mouse$gs_subcat)
      CGN             CGP              CM              CP 
             167344           42770          376981           49583            3881 
        CP:BIOCARTA         CP:KEGG          CP:PID     CP:REACTOME CP:WIKIPATHWAYS 
               4860           13694            8196           98232           27923 
              GO:BP           GO:CC           GO:MF             HPO     IMMUNESIGDB 
             660368          100991          105717          381251          944068 
     MIR:MIR_Legacy       MIR:MIRDB        TFT:GTRD  TFT:TFT_Legacy             VAX 
              34118          372658          235886          153310           44290 
    mouse_GO_bp = msigdbr(species = "Mus musculus",
                          category = "C5", #GO在C5
                          subcategory = "GO:BP") %>% 
                          dplyr::select(gs_name,gene_symbol)#这里可以选择gene symbol,也可以选择ID,根据自己数据需求来,主要为了方便
    mouse_GO_bp_Set = mouse_GO_bp %>% split(x = .$gene_symbol, f = .$gs_name)#后续gsva要求是list,所以将他转化为list
    

    表达矩阵数据有了,通路信息有了,就可以进行GEVA分析了,代码简单就一句!保存结果!

    T_gsva <- gsva(expr = immuneT, 
                    gset.idx.list = mouse_GO_bp_Set,
                    kcdf="Poisson", #查看帮助函数选择合适的kcdf方法 
                    parallel.sz = 5)
    
    write.table(T_gsva, 'T_gsva.xls', row.names=T, col.names=NA, sep="\t")
    

    接着差异分析可以用limma包,类似于转录组芯片数据分析流程。

    group <- c(rep("control", 50), rep("test", 71)) %>% as.factor()#设置分组,对照在前
    desigN <- model.matrix(~ 0 + group) #构建比较矩阵
    colnames(desigN) <- levels(group)
    fit = lmFit(test_control, desigN)
    fit2 <- eBayes(fit)
    diff=topTable(fit2,adjust='fdr',coef=2,number=Inf)#校准按照需求修改 ?topTable
    write.csv(diff, file = "Diff.csv")
    

    最后对差异的感兴趣的通路进行可视化:

    
    
    up <- c("GOBP_EGG_ACTIVATION",
            "GOBP_TENDON_DEVELOPMENT",
            "GOBP_SOMITE_SPECIFICATION",
            "GOBP_THREONINE_CATABOLIC_PROCESS",
            "GOBP_REGULATION_OF_GLUTAMATE_RECEPTOR_CLUSTERING",
            "GOBP_NEGATIVE_CHEMOTAXIS",
            "GOBP_NEGATIVE_REGULATION_OF_FAT_CELL_PROLIFERATION",
            "GOBP_REGULATION_OF_T_HELPER_17_CELL_LINEAGE_COMMITMENT",
            "GOBP_REGULATION_OF_ANTIMICROBIAL_HUMORAL_RESPONSE")
    down <- c("GOBP_DETERMINATION_OF_PANCREATIC_LEFT_RIGHT_ASYMMETRY",
              "GOBP_MITOTIC_DNA_REPLICATION",
              "GOBP_EOSINOPHIL_CHEMOTAXIS",
              "GOBP_NEUTROPHIL_MEDIATED_CYTOTOXICITY",
              "GOBP_POTASSIUM_ION_EXPORT_ACROSS_PLASMA_MEMBRANE",
              "GOBP_REGULATION_OF_LEUKOCYTE_MEDIATED_CYTOTOXICITY",
              "GOBP_REGULATION_OF_SEQUESTERING_OF_ZINC_ION",
              "GOBP_ENDOTHELIN_RECEPTOR_SIGNALING_PATHWAY",
              "GOBP_PRE_REPLICATIVE_COMPLEX_ASSEMBLY_INVOLVED_IN_CELL_CYCLE_DNA_REPLICATION",
              "GOBP_ESTABLISHMENT_OF_PLANAR_POLARITY_OF_EMBRYONIC_EPITHELIUM")
    TEST <- c(up,down)
    diff$ID <- rownames(diff) 
    Q <- diff[TEST,]
    group1 <- c(rep("treat", 9), rep("control", 10)) 
    df <- data.frame(ID = Q$ID, score = Q$t,group=group1 )
    # 按照t score排序
    sortdf <- df[order(df$score),]
    sortdf$ID <- factor(sortdf$ID, levels = sortdf$ID)#增加通路ID那一列
    
    ggplot(sortdf, aes(ID, score,fill=group)) + geom_bar(stat = 'identity',alpha = 0.7) + 
      coord_flip() + 
      theme_bw() + #去除背景色
      theme(panel.grid =element_blank())+
      theme(panel.border = element_rect(size = 0.6))+
      labs(x = "",
           y="t value of GSVA score")+
      scale_fill_manual(values = c("#008020","#08519C"))#设置颜色
    
    image.png

    整个流程就结束了,希望对你们的研究能有启发,GO、KEGG做多了,可以换着做一下GSVA分析!

    相关文章

      网友评论

        本文标题:跟着Cell学单细胞转录组分析(十三):单细胞GSVA分析|这个

        本文链接:https://www.haomeiwen.com/subject/tusjsrtx.html