美文网首页
多边形面积单元主题教学思考

多边形面积单元主题教学思考

作者: 笑生老师 | 来源:发表于2020-01-04 08:16 被阅读0次

  首先我们对北师版教材和人教版教材这两本教材的,就在于认识底和高的时间段,有稍许的差异,北师版教材呢,在认识底和高之前还曾,这是一个准备,可一在给后续的研究提供一些转化的策略,可是我们在看到这样的逻辑的时候呢,我们觉得首先他对我们的孩子具有很好的普世性,因为一线的老师都知道,在实践中,我们遵循这样的逻辑,上下来孩子接受的也是理解起来,在长方形中先学平行四边形的面积呢,于是我们就在想数学的逻辑到底是什么?其实数学的逻辑是基于这个长方形,可以推导出很多图形的面积,而这些图形之间又是可以相互转化,逻辑是这样的,告诉我们老师讲什么不重要,学生想什么,你这重要1000倍,于是我们开始调研了,学生的思维逻辑,那样一个调研题,我们想了解孩子们,数据显示,很多孩子他们由长方形得到了三角形的面积,我们看一下孩子的具体做法,有的同学把长方形像这样盐对角线切一半,得到了一个直角三角形的面积,还有的同学建构了这样一个等腰的三角形,从而得到三角形的一个面积,也有少许的同学得到这样一个普通三角形,于是我们又在思考,是不是直角三角形就是基于长方形的一个最近发展区?又为什么会是这样一个最近发展区呢?其实我们可以去看这两个图形,他们之间有太多的相似之处,而最大的差异就在于形上的差异,此时孩子是关注了整体的形,把整体的形这样对半分就很容易得到一个直角三角形的面积了,我们尝试先不给这样的方格图,然后再到给方格图,孩子们得到了很多转化的策略,然而在其中,我们也特别惊喜地发现了方格,家度娘来直接度娘这些图形的,还在这节课上面,不仅把这些图形进行转化对比,发现哪些图形之间有相等关系,而且他们还通过这样的格线发现这些三角形,可以借助这样一些长方形能得得到三角形的面积计算公式,由此还提出了质疑,那么钝角三角形慢慢的也通过这样的长方形得到呢,经过实践之后,孩子也发现邓角三角形,其实也就是长方形的,长呈长方形的宽,得到一个方形面积之后,除以二由此可以推导出了三角形面积计算公式,其实就是这个底和乘上它的垂直线,此时他们还不知道那个叫高呢,但是他知道这个垂直的线,三角形的面积推理只是停留在基于长方形河道的三角角,是不是就基于长方形得到三角形的面积的公式就可以了呢?我们再想这个问题,能为我们的内容设计带来 他们在研究平行四边形的面积的时候,我们让孩子对比了一下平行四边形,它能够转化成你们以前所学过的哪个图形?孩子们异口同声的说道能转化成长方形,又是什么样的呢?怎么有一个不同的转化成一个相同的孩子们发现最大的差异?就在于要构建直角,那这直角如何构建呢?学生的思维大致分为两类,第一类就是像样,我们所希望看到的做他的高,然后用割补的方法去实现,而第二类孩子是想到的基于以往长方形的经验,把平四边形,方形式邻边相乘平行,四边形会不会也是邻边相乘的?也有一少部分孩子产生了这样的一个疑虑,于是他们会认为平时边形的面积和长方形面积一样,也会零点相乘,那当我们再把这些图形放到,基本的数这个测量面积的方法,这个的图能够很好的度量除外的面积,也就发现这两者面积,其实是不一样的,孩子们体会到了之前,我们首先要保证的神神面积守恒,在面积守恒的基础上面,我们才能够实现图形面积的转换,然后进行图形面积的公式推理,有关当中孩子们经历了一个非常曲折艰难的过程,然而,在这个艰难曲折的过程当中,他们也积累下来,非常宝贵的经验,进而再由平行四边形去看三角形的时候学策略就显得非常丰富了,他可以借助垂直平行等分点,这些方法来实现由一道,有机会机电了,非常厚实的力量,比如说到梯形的应用的时候,这时候我们让放手,让孩子去探索的时候,他们的所有的经验就给爆发出来了,然后再要素的应用,孩子们又会回到以前行上面去考虑,这里不行,在形上还可以去,怎么去转化推理和肚?暂时想再次发觉要素的理由,我忽然发现其实图形的测量在于图形的特征,而图形的特征又在于图形的要素,这样完成了对图形一个从整体到局部再到整体的认识,而这种认识由局部的行的认识,整体的形的认识也有局部的要素的认识,促进了孩子对图形的一个更深,教材的逻辑,数学的逻辑,还有学生的逻辑,这三个逻辑进行了一个整合

  我们把底和高的认识放在了面积推导的过程当中,其实我们也是想让孩子去体会到底和高的真正价值,也就是孩子们以前学生如果先认识底和高,他们一定会在追问为什么要对应的底层对应的高,然而,在这个自然引出的过程之后,孩子们就会明白了,其实这个对应的底层对应的高就是这个转化后的长方形的长长方形的宽,嗯,我们置地之后,于是我们就在想如何有声这声又是什么呢?张丹老师的大观念给了我们一个很好的启发和思考,在那老师向我们提出了这三条,我们把这三条画完了,大概就是这样一,也可以用公式度量,所谓直接读量呢,就是用面积单位不断的去累加转化度量呢,就是基于以往学习的经验,我们可以把新图形转化为就图形,然后借助旧图型的经来公式出公式度良心图形,期望在这样的过程当中,他的这些能力能得以提升,然后我们发现在这些能力当中,推理能力应该是一个更上位的,总学习和问题解决能力能够也可以,那么第一课时主要保留的就是比较图形的面积。

相关文章

  • 多边形面积单元主题教学思考

    首先我们对北师版教材和人教版教材这两本教材的,就在于认识底和高的时间段,有稍许的差异,北师版教材呢,在认识底和高...

  • 数面积设计思考

    数面积设计思考 ——青岛版小学数学五年级上册《多边形的面积》单元起始课 教材分析: 三年级下册:基于对面积概念的理...

  • 主题学习策略(二十)

    整合教学的基本模式 基本课型:1+x单元主题教学 1+x+y单元主题教学:贵在融合。“单元主题教学”就是把教材的一...

  • 多边形面积教学反思

    1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把平行四边形转...

  • 国培:把握单元教学的核心要素

    单元教学分为单元主题确定,目标确立,评价目标能否达成,最后制定活动。 单元主题整体教学结构图。 教学目标考虑以下问...

  • 单元主题教学

    八模块单元主题教学 谈到模块化教学,我们都知道统编教材的语文大单元教学。今天就来学习一下单元的八个模块教学: ...

  • 群文教学

    单元群文教学一 单元群文主题教学,是这个寒假学习的主要内容。群文主题阅读教学,课堂...

  • 正确对待学生的错误

    在教学《多边形的面积》这一单元时,每次批改作业,都让我怒火中烧,明明讲了又讲的题,强调了一遍又一遍的注意事项,学生...

  • 单元主题教学之“单元”

    “单元”是指课程实施的单元,即以主题为中心,对相关教学内容进行整合,形成一组彼此关联的系列教学活动,通常需要若干课...

  • 主题学习策略(二十二)

    整合教学的形式 1+x单元主题教学的三种形式: 1+x单元主题教学,可根据年级段特点、教材特点、教学目标、...

网友评论

      本文标题:多边形面积单元主题教学思考

      本文链接:https://www.haomeiwen.com/subject/uezxnctx.html