- (3.7)James Stewart Calculus 5th
- (10.3)James Stewart Calculus 5th
- (11.1)James Stewart Calculus 5th
- (10.5)James Stewart Calculus 5th
- (10.6)James Stewart Calculus 5th
- (10.2)James Stewart Calculus 5th
- (10.4)James Stewart Calculus 5th
- (11.2)James Stewart Calculus 5th
- (10.1)James Stewart Calculus 5th
- (8.4)James Stewart Calculus 5th
Higher Derivatives
![](https://img.haomeiwen.com/i2800913/e04c2af5a340e560.png)
如果 微分函数 的导数 f' 依然是一个函数的话,那么这个导数的导数,可以写成 (f')' = f''。 叫 二阶导数。 莱布尼茨 写法为:
![](https://img.haomeiwen.com/i2800913/4f0c684dfb0769f9.png)
或者:
![](https://img.haomeiwen.com/i2800913/199881bec7a89ae0.png)
例子:
![](https://img.haomeiwen.com/i2800913/792346f1cf2f22b2.png)
直接先求导
![](https://img.haomeiwen.com/i2800913/109823e516f8f0fe.png)
再次求导,即可
![](https://img.haomeiwen.com/i2800913/90bb0d155494a797.png)
三阶导数,四阶导数,n阶导数
这里只是简单说明,自己和上面类似,自己就不扯蛋了
![](https://img.haomeiwen.com/i2800913/6470c542199f32e2.png)
一些例子:
例子4
![](https://img.haomeiwen.com/i2800913/2e1c58292e3d9c4c.png)
这个只需要不停的求导,再找规律:
![](https://img.haomeiwen.com/i2800913/d45338e695795da4.png)
这里定义阶乘: n!
![](https://img.haomeiwen.com/i2800913/cc089f98e5ab5883.png)
所以可以简写成:
![](https://img.haomeiwen.com/i2800913/d7eb989c11d9cecc.png)
例子5
![](https://img.haomeiwen.com/i2800913/4af7f51284442697.png)
对y求导数,可以得到:
![](https://img.haomeiwen.com/i2800913/9229598cc46691af.png)
化简后,为:
![](https://img.haomeiwen.com/i2800913/9648ffbe41288ff0.png)
再次求导数(注意公式)
![](https://img.haomeiwen.com/i2800913/c94f8113b66b2f9c.png)
这个时候,注意有 y' , 前面有求得对应的结果, 带入替换得:
(这里,书上有错误,少写了指数6)
![](https://img.haomeiwen.com/i2800913/80e18fdf8da3d7e4.png)
化简,可以得到结果:
![](https://img.haomeiwen.com/i2800913/b20d2bb3d7c9f358.png)
例子6
![](https://img.haomeiwen.com/i2800913/554f40aed5c65008.png)
这个只是周期性导数,直接找规律即可
![](https://img.haomeiwen.com/i2800913/977e9d66c52a8e7d.png)
我们可以发现,周期为4,那对应的24次求导,应该是:
![](https://img.haomeiwen.com/i2800913/5a1472d442a987c9.png)
所以,对应的27次求导,为:
![](https://img.haomeiwen.com/i2800913/aa59157c2c8bfc9b.png)
网友评论