- (7.7)James Stewart Calculus 5th
- (10.3)James Stewart Calculus 5th
- (11.1)James Stewart Calculus 5th
- (10.5)James Stewart Calculus 5th
- (10.6)James Stewart Calculus 5th
- (10.2)James Stewart Calculus 5th
- (10.4)James Stewart Calculus 5th
- (11.2)James Stewart Calculus 5th
- (10.1)James Stewart Calculus 5th
- (8.4)James Stewart Calculus 5th
Approximate Integration 近似积分
黎曼求和,我们把对应的[a, b]分成n份,每份大概为 Δx = (b - a)/n
这个时候,有:
![](https://img.haomeiwen.com/i2800913/5d2139a5775570be.png)
我们可以用左边的顶点求和,为:
![](https://img.haomeiwen.com/i2800913/cd500a848a088fd8.png)
对应的图像为:
![](https://img.haomeiwen.com/i2800913/69608c2c3843718d.png)
或者,我们用右边的顶点求和,为:
![](https://img.haomeiwen.com/i2800913/615d289436338651.png)
对应的图像为:
![](https://img.haomeiwen.com/i2800913/7dcc993a2d1a87a8.png)
当我们用中点去求近似的时候,会比左边,右边要更好
Midpoint Rule 中点原则
![](https://img.haomeiwen.com/i2800913/0bfabfa8a53f718c.png)
原则定义:
![](https://img.haomeiwen.com/i2800913/2950a8c557a306f4.png)
Trapezoidal Rule 梯形原则
![](https://img.haomeiwen.com/i2800913/75b5ca6b25c367d7.png)
原则定义:
![](https://img.haomeiwen.com/i2800913/229e97d1f9c299b4.png)
这里,我们可以通过
![](https://img.haomeiwen.com/i2800913/031526d563b745f0.png)
化简为上面的公式
例子
一些例子,
因为比较简单,只是应用,这里就截个图
例子1
![](https://img.haomeiwen.com/i2800913/9f742ca59bbe6df4.png)
这里分别用 梯形原则 , 中点原则 求值
n为5的时候,带入即可:
![](https://img.haomeiwen.com/i2800913/d3ba0965ab8d9db4.png)
对应的图像为:
![](https://img.haomeiwen.com/i2800913/680afcc7fb748246.png)
对应的 中点原则 求值,为:
![](https://img.haomeiwen.com/i2800913/dd1670976f6185f9.png)
对应的图像为:
![](https://img.haomeiwen.com/i2800913/206d4819ae8a526b.png)
我们通过积分,求得对应的真实值为:
![](https://img.haomeiwen.com/i2800913/3ff36e7b66ab9ffd.png)
这个时候,我们对比一下对应的error误差:
(Et 表示 Trapezoidal Rule 梯形原则的误差, Em 表示 Midpoint Rule 中点原则的误差)
![](https://img.haomeiwen.com/i2800913/32b7a74fa16f0c45.png)
![](https://img.haomeiwen.com/i2800913/5f608ab5bd7b1ccd.png)
根据上面的值,我们可以得到,对应的值大约为:
![](https://img.haomeiwen.com/i2800913/b5c12fa5aef7422b.png)
![](https://img.haomeiwen.com/i2800913/7fffcd1c98919b04.png)
例子1的地方,
我们用 L 表示左顶点求值, R表示右顶点求值, T表示梯形求值, M表示中点求值
我们可以得到对应n的时候,对应的值
![](https://img.haomeiwen.com/i2800913/726831f695d2d2d3.png)
根据上面的近似值,可以得到对应的相对误差E
![](https://img.haomeiwen.com/i2800913/911b828d0e35d6b2.png)
我们可以通过表格发现,对应的 L, R, 没有 T 和 M相对误差小
Error Bounds 误差范围
对应的误差范围:
![](https://img.haomeiwen.com/i2800913/85e63a6b0b379fd1.png)
例子2
![](https://img.haomeiwen.com/i2800913/2002934e496a2c87.png)
根据上面的公式,这里 根据
![](https://img.haomeiwen.com/i2800913/27ac19d842eea979.png)
可以得到:
![](https://img.haomeiwen.com/i2800913/7da872e79c9f434a.png)
最后得到结果:
![](https://img.haomeiwen.com/i2800913/932dc15dc8476442.png)
即:
![](https://img.haomeiwen.com/i2800913/ee973cb89c6de87a.png)
所以, n = 41的时候, 可以满足对应的精度。
同理, 对 Midpoint Rule 中点原则
有:
![](https://img.haomeiwen.com/i2800913/8684093824565eb7.png)
例子3
![](https://img.haomeiwen.com/i2800913/6026f8068d1b338e.png)
(a)我们当 a = 0,b = 1,n = 10, 和 中点原则 可以有:
![](https://img.haomeiwen.com/i2800913/9a701ea41890f6f6.png)
(b)我们可以得到
![](https://img.haomeiwen.com/i2800913/917cad7e4e27c4fc.png)
可以求得:
![](https://img.haomeiwen.com/i2800913/f68d1ad5b15ba131.png)
![](https://img.haomeiwen.com/i2800913/7fee2d179a800269.png)
根据上面的公式,可以得到:
![](https://img.haomeiwen.com/i2800913/1fdd2dbdb2b31ff3.png)
Simpson’s Rule 辛普森法则
![](https://img.haomeiwen.com/i2800913/cb7184f8e11db62e.png)
例子4
![](https://img.haomeiwen.com/i2800913/a5a4f85346697c39.png)
简单套 Simpson’s Rule 辛普森法则 公式,
![](https://img.haomeiwen.com/i2800913/956f3c0d6c09f587.png)
Error Bound for Simpson’s Rule
![](https://img.haomeiwen.com/i2800913/b84a46853a2fdf1c.png)
这里当2次翻倍的时候,也就是4次求导
可以得到对应的 辛普森法则, 求出 辛普森法则 的误差范围
例子6
![](https://img.haomeiwen.com/i2800913/02724421eafcf55b.png)
这个时候,我们要对应的进度到达0.0001
我们先多次求导,可以得到:
![](https://img.haomeiwen.com/i2800913/56ac7055c49306d6.png)
这里因为自变量范围是在1和2之间,所以
![](https://img.haomeiwen.com/i2800913/4d58093283eb2a2d.png)
根据上面的公司,有不等式:
![](https://img.haomeiwen.com/i2800913/ac32987e1c930daf.png)
有:
![](https://img.haomeiwen.com/i2800913/787a1cb9eef90cb8.png)
即:
![](https://img.haomeiwen.com/i2800913/ab3891b1619cacf5.png)
网友评论