机器学习 Day 11 | 决策树案例实现(1)

作者: raphah | 来源:发表于2018-08-18 19:18 被阅读23次

    机器学习第十一天 决策树项目案例(1)

    周末好鸭,8月真的巨忙,决策树2个案例实现后下周开始划水只看看各算法的基础概念了,等一个项目交付完

    项目案例1:判断鱼类和非鱼类

    项目概述

    根据以下2个特征,将动物分成两类:鱼类和非鱼类。

    特征:
    1.不浮出水面是否可以生存
    2.是否有脚蹼

    开发流程

    收集数据:可以使用任何方法
    准备数据:树构造算法(这里使用的是ID3算法,因此数值型数据必须离散化。)
    分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。
    训练算法:构造树结构
    测试算法:使用习得的决策树执行分类
    使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义
    
    

    收集数据:可以使用任何方法

    我们使用createDataSet()函数输入数据

    def createDataSet():
        dataSet = [[1, 1, 'yes'],
                [1, 1, 'yes'],
                [1, 0, 'no'],
                [0, 1, 'no'],
                [0, 1, 'no']]
        labels = ['no surfacing', 'flippers']
        return dataSet, labels
    
    

    准备数据:树构造算法

    此处,由于我们输入的数据本身就是离散化数据,所以这一步就省略了。

    分析数据:可以使用任何方法,构造树完成之后,我们可以将树画出来。

    熵的计算公式.jpg

    计算给定数据集的香浓熵的函数

    def calcShannonEnt(dataSet):
        # 求list的长度,表示计算参与训练的数据量
        numEntries = len(dataSet)
        # 计算分类标签label出现的次数
        labelCounts = {}
        # the the number of unique elements and their occurrence
        for featVec in dataSet:
            # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
            currentLabel = featVec[-1]
            # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
            if currentLabel not in labelCounts.keys():
                labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
    
        # 对于 label 标签的占比,求出 label 标签的香农熵
        shannonEnt = 0.0
        for key in labelCounts:
            # 使用所有类标签的发生频率计算类别出现的概率。
            prob = float(labelCounts[key])/numEntries
            # 计算香农熵,以 2 为底求对数
            shannonEnt -= prob * log(prob, 2)
        return shannonEnt
    
    

    按照给定特征划分数据集
    将指定特征的特征值等于 value 的行剩下列作为子数据集。

    def splitDataSet(dataSet, index, value):
        """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)
            就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中
        Args:
            dataSet 数据集                 待划分的数据集
            index 表示每一行的index列        划分数据集的特征
            value 表示index列对应的value值   需要返回的特征的值。
        Returns:
            index列为value的数据集【该数据集需要排除index列】
        """
        retDataSet = []
        for featVec in dataSet: 
            # index列为value的数据集【该数据集需要排除index列】
            # 判断index列的值是否为value
            if featVec[index] == value:
                # chop out index used for splitting
                # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行
                reducedFeatVec = featVec[:index]
                '''
                请百度查询一下: extend和append的区别
                music_media.append(object) 向列表中添加一个对象object
                music_media.extend(sequence) 把一个序列seq的内容添加到列表中 (跟 += 在list运用类似, music_media += sequence)
                1、使用append的时候,是将object看作一个对象,整体打包添加到music_media对象中。
                2、使用extend的时候,是将sequence看作一个序列,将这个序列和music_media序列合并,并放在其后面。
                music_media = []
                music_media.extend([1,2,3])
                print music_media
                #结果:
                #[1, 2, 3]
                
                music_media.append([4,5,6])
                print music_media
                #结果:
                #[1, 2, 3, [4, 5, 6]]
                
                music_media.extend([7,8,9])
                print music_media
                #结果:
                #[1, 2, 3, [4, 5, 6], 7, 8, 9]
                '''
                reducedFeatVec.extend(featVec[index+1:])
                # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据
                # 收集结果值 index列为value的行【该行需要排除index列】
                retDataSet.append(reducedFeatVec)
        return retDataSet
    
    

    选择最好的数据集划分方式

    def chooseBestFeatureToSplit(dataSet):
        """chooseBestFeatureToSplit(选择最好的特征)
    
        Args:
            dataSet 数据集
        Returns:
            bestFeature 最优的特征列
        """
        # 求第一行有多少列的 Feature, 最后一列是label列嘛
        numFeatures = len(dataSet[0]) - 1
        # 数据集的原始信息熵
        baseEntropy = calcShannonEnt(dataSet)
        # 最优的信息增益值, 和最优的Featurn编号
        bestInfoGain, bestFeature = 0.0, -1
        # iterate over all the features
        for i in range(numFeatures):
            # create a list of all the examples of this feature
            # 获取对应的feature下的所有数据
            featList = [example[i] for example in dataSet]
            # get a set of unique values
            # 获取剔重后的集合,使用set对list数据进行去重
            uniqueVals = set(featList)
            # 创建一个临时的信息熵
            newEntropy = 0.0
            # 遍历某一列的value集合,计算该列的信息熵 
            # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                # 计算概率
                prob = len(subDataSet)/float(len(dataSet))
                # 计算信息熵
                newEntropy += prob * calcShannonEnt(subDataSet)
            # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
            # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
            infoGain = baseEntropy - newEntropy
            print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
            if (infoGain > bestInfoGain):
                bestInfoGain = infoGain
                bestFeature = i
        return bestFeature
    
    
    问:上面的 newEntropy 为什么是根据子集计算的呢?
    答:因为我们在根据一个特征计算香农熵的时候,该特征的分类值是相同,这个特征这个分类的香农熵为 0;
    这就是为什么计算新的香农熵的时候使用的是子集。
    训练算法:构造树的数据结构
    
    

    训练算法:构造树的数据结构

    创建树的函数代码如下:

    def createTree(dataSet, labels):
        classList = [example[-1] for example in dataSet]
        # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
        # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
        # count() 函数是统计括号中的值在list中出现的次数
        if classList.count(classList[0]) == len(classList):
            return classList[0]
        # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
        # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
        if len(dataSet[0]) == 1:
            return majorityCnt(classList)
    
        # 选择最优的列,得到最优列对应的label含义
        bestFeat = chooseBestFeatureToSplit(dataSet)
        # 获取label的名称
        bestFeatLabel = labels[bestFeat]
        # 初始化myTree
        myTree = {bestFeatLabel: {}}
        # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
        # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
        del(labels[bestFeat])
        # 取出最优列,然后它的branch做分类
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            # 求出剩余的标签label
            subLabels = labels[:]
            # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
            # print 'myTree', value, myTree
        return myTree
    
    

    测试算法:使用决策树执行分类

    
    def classify(inputTree, featLabels, testVec):
        """classify(给输入的节点,进行分类)
    
        Args:
            inputTree  决策树模型
            featLabels Feature标签对应的名称
            testVec    测试输入的数据
        Returns:
            classLabel 分类的结果值,需要映射label才能知道名称
        """
        # 获取tree的根节点对于的key值
        firstStr = inputTree.keys()[0]
        # 通过key得到根节点对应的value
        secondDict = inputTree[firstStr]
        # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
        featIndex = featLabels.index(firstStr)
        # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
        key = testVec[featIndex]
        valueOfFeat = secondDict[key]
        print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat
        # 判断分枝是否结束: 判断valueOfFeat是否是dict类型
        if isinstance(valueOfFeat, dict):
            classLabel = classify(valueOfFeat, featLabels, testVec)
        else:
            classLabel = valueOfFeat
        return classLabel
    
    

    相关文章

      网友评论

        本文标题:机器学习 Day 11 | 决策树案例实现(1)

        本文链接:https://www.haomeiwen.com/subject/vdofiftx.html