美文网首页R语言学习«怎么制作生信美图»转录组
如何轻松绘制基因表达聚类趋势图

如何轻松绘制基因表达聚类趋势图

作者: Davey1220 | 来源:发表于2020-09-20 22:16 被阅读0次
    image.png
    # 清除当前环境中的变量
    rm(list=ls())
    # 设置工作路径
    setwd("C:/Users/Dell/Desktop/")
    # 加载所需的R包
    library(ggplot2)
    library(pheatmap)
    library(reshape2)
    
    # 读取测试数据
    data <- read.table("test.txt",header = T, row.names = 1,check.names = F)
    # 查看数据基本信息
    head(data)
    
    ##              Stage1_R1 Stage1_R2  Stage2_R1  Stage2_R2  Stage3_R1
    ## Unigene0001 -1.1777172 -1.036102  0.8423829  1.3458754  0.1080678
    ## Unigene0002  1.0596877  1.490939 -0.7663244 -0.6255567 -0.5333080
    ## Unigene0003  0.9206594  1.575844 -0.7861697 -0.3860003 -0.5501094
    ## Unigene0004 -1.3553173 -1.145970  0.2097526  0.7059886  0.9516353
    ## Unigene0005  1.0134516  1.445897 -0.9705129 -0.8560422 -0.2556562
    ## Unigene0006  0.8675939  1.575735 -1.0120718 -0.5856459 -0.2821991
    ##               Stage3_R2
    ## Unigene0001 -0.08250721
    ## Unigene0002 -0.62543728
    ## Unigene0003 -0.77422398
    ## Unigene0004  0.63391053
    ## Unigene0005 -0.37713783
    ## Unigene0006 -0.56341216
    
    # 使用pheatmap绘制基因表达热图,并进行层次聚类分成不同的cluster
    p <- pheatmap(data, show_rownames = F, cellwidth =40, cluster_cols = F, 
             cutree_rows = 6,gaps_col = c(2,4,6), angle_col = 45,fontsize = 12)
    
    image.png
    # 获取聚类后的基因顺序
    row_cluster = cutree(p$tree_row,k=6)
    # 对聚类后的数据进行重新排序
    newOrder = data[p$tree_row$order,]
    newOrder[,ncol(newOrder)+1]= row_cluster[match(rownames(newOrder),names(row_cluster))]
    colnames(newOrder)[ncol(newOrder)]="Cluster"
    # 查看重新排序后的数据
    head(newOrder)
    
    ##             Stage1_R1 Stage1_R2  Stage2_R1  Stage2_R2  Stage3_R1 Stage3_R2
    ## Unigene0604 0.8097531  1.403759 -0.2668053 0.17819117 -0.9811268 -1.143771
    ## Unigene0262 0.8453759  1.408372 -0.2802646 0.12312391 -0.9767547 -1.119853
    ## Unigene0069 0.8279061  1.428306 -0.3124647 0.12820543 -0.9524584 -1.119494
    ## Unigene0219 0.8536163  1.423168 -0.3082219 0.09583306 -0.9584284 -1.105967
    ## Unigene0116 0.8282198  1.491489 -0.4344344 0.05187827 -0.8641523 -1.073000
    ## Unigene0297 0.8008572  1.459959 -0.3661415 0.13242699 -0.9111229 -1.115978
    ##             Cluster
    ## Unigene0604       6
    ## Unigene0262       6
    ## Unigene0069       6
    ## Unigene0219       6
    ## Unigene0116       6
    ## Unigene0297       6
    
    # 查看聚类后cluster的基本信息
    unique(newOrder$Cluster)
    
    ## [1] 6 2 5 3 4 1
    
    table(newOrder$Cluster)
    
    ## 
    ##   1   2   3   4   5   6 
    ## 258 314  68   9  12  39
    
    # 将新排序后的数据保存输出
    newOrder$Cluster = paste0("cluster",newOrder$Cluster)
    write.table(newOrder, "expr_DE.pheatmap.cluster.txt",sep="\t",quote = F,row.names = T,col.names = T)
    
    # 绘制每个cluster的基因聚类趋势图
    newOrder$gene = rownames(newOrder)
    head(newOrder)
    
    ##             Stage1_R1 Stage1_R2  Stage2_R1  Stage2_R2  Stage3_R1 Stage3_R2
    ## Unigene0604 0.8097531  1.403759 -0.2668053 0.17819117 -0.9811268 -1.143771
    ## Unigene0262 0.8453759  1.408372 -0.2802646 0.12312391 -0.9767547 -1.119853
    ## Unigene0069 0.8279061  1.428306 -0.3124647 0.12820543 -0.9524584 -1.119494
    ## Unigene0219 0.8536163  1.423168 -0.3082219 0.09583306 -0.9584284 -1.105967
    ## Unigene0116 0.8282198  1.491489 -0.4344344 0.05187827 -0.8641523 -1.073000
    ## Unigene0297 0.8008572  1.459959 -0.3661415 0.13242699 -0.9111229 -1.115978
    ##              Cluster        gene
    ## Unigene0604 cluster6 Unigene0604
    ## Unigene0262 cluster6 Unigene0262
    ## Unigene0069 cluster6 Unigene0069
    ## Unigene0219 cluster6 Unigene0219
    ## Unigene0116 cluster6 Unigene0116
    ## Unigene0297 cluster6 Unigene0297
    
    library(reshape2)
    # 将短数据格式转换为长数据格式
    data_new = melt(newOrder)
    
    ## Using Cluster, gene as id variables
    
    head(data_new)
    
    ##    Cluster        gene  variable     value
    ## 1 cluster6 Unigene0604 Stage1_R1 0.8097531
    ## 2 cluster6 Unigene0262 Stage1_R1 0.8453759
    ## 3 cluster6 Unigene0069 Stage1_R1 0.8279061
    ## 4 cluster6 Unigene0219 Stage1_R1 0.8536163
    ## 5 cluster6 Unigene0116 Stage1_R1 0.8282198
    ## 6 cluster6 Unigene0297 Stage1_R1 0.8008572
    
    # 绘制基因表达趋势折线图
    ggplot(data_new,aes(variable, value, group=gene)) + geom_line(color="gray90",size=0.8) + 
      geom_hline(yintercept =0,linetype=2) +
      stat_summary(aes(group=1),fun.y=mean, geom="line", size=1.2, color="#c51b7d") + 
      facet_wrap(Cluster~.) +
      theme_bw() + 
      theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
            axis.text = element_text(size=8, face = "bold"),
            strip.text = element_text(size = 8, face = "bold"))
    
    image.png
    sessionInfo()
    
    ## R version 3.6.0 (2019-04-26)
    ## Platform: x86_64-w64-mingw32/x64 (64-bit)
    ## Running under: Windows 10 x64 (build 17763)
    ## 
    ## Matrix products: default
    ## 
    ## locale:
    ## [1] LC_COLLATE=Chinese (Simplified)_China.936 
    ## [2] LC_CTYPE=Chinese (Simplified)_China.936   
    ## [3] LC_MONETARY=Chinese (Simplified)_China.936
    ## [4] LC_NUMERIC=C                              
    ## [5] LC_TIME=Chinese (Simplified)_China.936    
    ## 
    ## attached base packages:
    ## [1] stats     graphics  grDevices utils     datasets  methods   base     
    ## 
    ## other attached packages:
    ## [1] reshape2_1.4.3  pheatmap_1.0.12 ggplot2_3.2.0  
    ## 
    ## loaded via a namespace (and not attached):
    ##  [1] Rcpp_1.0.1         knitr_1.23         magrittr_1.5      
    ##  [4] tidyselect_0.2.5   munsell_0.5.0      colorspace_1.4-1  
    ##  [7] R6_2.4.0           rlang_0.4.0        plyr_1.8.4        
    ## [10] stringr_1.4.0      dplyr_0.8.3        tools_3.6.0       
    ## [13] grid_3.6.0         gtable_0.3.0       xfun_0.8          
    ## [16] withr_2.1.2        htmltools_0.3.6    yaml_2.2.0        
    ## [19] lazyeval_0.2.2     digest_0.6.20      assertthat_0.2.1  
    ## [22] tibble_2.1.3       crayon_1.3.4       RColorBrewer_1.1-2
    ## [25] purrr_0.3.2        glue_1.3.1         evaluate_0.14     
    ## [28] rmarkdown_1.13     labeling_0.3       stringi_1.4.3     
    ## [31] compiler_3.6.0     pillar_1.4.2       scales_1.0.0      
    ## [34] pkgconfig_2.0.2
    

    相关文章

      网友评论

        本文标题:如何轻松绘制基因表达聚类趋势图

        本文链接:https://www.haomeiwen.com/subject/wdxmyktx.html