美文网首页Unity Shader分享Unity技术分享
Unity-Shader(三)高光反射&Blinn-Ph

Unity-Shader(三)高光反射&Blinn-Ph

作者: 7fc14ada7795 | 来源:发表于2018-09-03 15:18 被阅读2次

    先看一下基本光照模型中的高光反射部分的计算公式:

    image

    逐顶点光照实现 高光反射

    分析

    在Properties语义块中声明了三个属性:

    Properties
    {
        _Diffuse ("Diffuse" , Color) = (1,1,1,1)
        _Specular ("Specular" , Color) = (1,1,1,1)
        _Gloss ("Gloss" , Range(8.0,256)) = 20
    }
    

    _Specular用来控制材质的高光反射的颜色

    _Gloss用于控制高光区域的大小

    其他的代码基本和往常一样,不细说了

    Tags { "LightMode" = "ForwardBase" }
    
    CGPROGRAM
    #pragma vertex vert
    #pragma fragment frag
    #include "Lighting.cginc"
    
    fixed4 _Diffuse;
    fixed4 _Specular;
    float _Gloss;
    
    struct a2v{
        float4 vertex : POSITION;
        float3 normal : NORMAL;
    };
    struct v2f{
        float4 pos : SV_POSITION;
        float3 color : COLOR;
    };
    

    在顶点着色器中计算了包含高光反射的光照模型

    v2f vert(a2v v){
        v2f o;
        o.pos = UnityObjectToClipPos( v.vertex);
        //得到环境光
        fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
        //将法线从模型空间变换的世界空间
        fixed3 worldNormal = normalize(mul(v.normal , (float3x3)unity_WorldToObject));
        //在世界空间中光照方向
        fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
        fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
        fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
        fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld , v.vertex).xyz);
        fixed3 specular = _LightColor0.rgb * _Specular.rgb *pow(saturate(dot(reflectDir , viewDir)),_Gloss);
        o.color = ambient + diffuse + specular;
        return o;
    }
    

    首先计算了入射光线防线关于表面法线的反射方向reflectDir。犹豫Cg的reflect函数的入社方向要求是由光源指向交点处的,因此需要对worldLightDir取反再传给reflect函数。

    然后通过——WorldSpaceCameraPos得到世界空间中的摄像机位置,再把顶点位置从模型空间变换得到世界空间下,再通过——WorldSpaceCameraPos相减即可得到世界空间下的视角方向。

    最后

    fixed4 frag(v2f i) : SV_Target{
        return fixed4(i.color , 1.0);
    }
    

    效果

    image

    使用逐顶点着色器的方法得到的高光效果有比较大的问题,可以从效果图中看到有明显的不平滑,因为高光反射部分的计算是非线性的,而在顶点着色器中计算光照在进行插值的过程是线性的,破换了原计算的非线性关系。

    代码

    // Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
    // Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
    // Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
    
    Shader "Unlit/Specular_1"
    {
        Properties
        {
            _Diffuse ("Diffuse" , Color) = (1,1,1,1)
            _Specular ("Specular" , Color) = (1,1,1,1)
            _Gloss ("Gloss" , Range(8.0,256)) = 20
        }
        SubShader
        {
            Pass{
                Tags { "LightMode" = "ForwardBase" }
    
                CGPROGRAM
                #pragma vertex vert
                #pragma fragment frag
                #include "Lighting.cginc"
    
                fixed4 _Diffuse;
                fixed4 _Specular;
                float _Gloss;
    
                struct a2v{
                    float4 vertex : POSITION;
                    float3 normal : NORMAL;
                };
                struct v2f{
                    float4 pos : SV_POSITION;
                    float3 color : COLOR;
                };
    
                v2f vert(a2v v){
                    v2f o;
                    o.pos = UnityObjectToClipPos( v.vertex);
                    fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
                    fixed3 worldNormal = normalize(mul(v.normal , (float3x3)unity_WorldToObject));
                    fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
                    fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
                    fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
                    fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld , v.vertex).xyz);
                    fixed3 specular = _LightColor0.rgb * _Specular.rgb *pow(saturate(dot(reflectDir , viewDir)),_Gloss);
                    o.color = ambient + diffuse + specular;
                    return o;
                }
    
                fixed4 frag(v2f i) : SV_Target{
                    return fixed4(i.color , 1.0);
                }
    
    
                ENDCG
            }
            
        }
        Fallback "Specular"
    }
    
    

    逐像素 实现高光反射模型

    分析

    在原来代码的基础上进行修改

    修改顶点着色器的输出结构v2f

    struct v2f{
        float4 pos : SV_POSITION;
        float3 worldNormal : TEXCOORD0;
        float3 worldPos : TEXCOORD1;
    };
    

    修改顶点着色器

    v2f vert(a2v v){
        v2f o;
        o.pos = UnityObjectToClipPos( v.vertex);
        o.worldNormal = mul(v.normal , (float3x3)unity_WorldToObject);
        o.worldPos = mul(unity_ObjectToWorld , v.vertex).xyz;
        return o;
    }
    

    修改片元着色器:

    fixed4 frag(v2f i) : SV_Target{
        fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
        fixed3 worldNormal = normalize(i.worldNormal);
        fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
        fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
        fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
        fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
        fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir , viewDir)) , _Gloss);
        return fixed4(ambient + diffuse + specular , 1.0);
    }
    

    效果:

    image

    可以看出,使用逐像素实现高光反射,使得高光效果更加平滑

    全部代码:

    // Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
    // Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
    // Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
    
    Shader "Unlit/Specular_2"
    {
        Properties
        {
            _Diffuse ("Diffuse" , Color) = (1,1,1,1)
            _Specular ("Specular" , Color) = (1,1,1,1)
            _Gloss ("Gloss" , Range(8.0,256)) = 20
        }
        SubShader
        {
            Pass{
                Tags { "LightMode" = "ForwardBase" }
    
                CGPROGRAM
                #pragma vertex vert
                #pragma fragment frag
                #include "Lighting.cginc"
    
                fixed4 _Diffuse;
                fixed4 _Specular;
                float _Gloss;
    
                struct a2v{
                    float4 vertex : POSITION;
                    float3 normal : NORMAL;
                };
                struct v2f{
                    float4 pos : SV_POSITION;
                    float3 worldNormal : TEXCOORD0;
                    float3 worldPos : TEXCOORD1;
                };
    
                v2f vert(a2v v){
                    v2f o;
                    o.pos = UnityObjectToClipPos( v.vertex);
                    o.worldNormal = mul(v.normal , (float3x3)unity_WorldToObject);
                    o.worldPos = mul(unity_ObjectToWorld , v.vertex).xyz;
                    return o;
                }
    
                fixed4 frag(v2f i) : SV_Target{
                    fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
                    fixed3 worldNormal = normalize(i.worldNormal);
                    fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
                    fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
                    fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
                    fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
                    fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir , viewDir)) , _Gloss);
                    return fixed4(ambient + diffuse + specular , 1.0);
                }
    
    
                ENDCG
            }
            
        }
        Fallback "Specular"
    }
    
    

    Blinn-Phong 光照模型

    公式:

    image

    修改逐像素实现高光反射的片元着色器的代码:

    fixed4 frag(v2f i) : SV_Target{
        fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
        fixed3 worldNormal = normalize(i.worldNormal);
        fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
        fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
        fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
        fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
        fixed3 halfDir = normalize(worldLightDir + viewDir);
        fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(max(0,dot(worldNormal , halfDir)) , _Gloss);
        return fixed4(ambient + diffuse + specular , 1.0);
    }
    

    效果:

    image

    全部代码

    // Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
    // Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
    // Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
    
    Shader "Unlit/Specular_3"
    {
        Properties
        {
            _Diffuse ("Diffuse" , Color) = (1,1,1,1)
            _Specular ("Specular" , Color) = (1,1,1,1)
            _Gloss ("Gloss" , Range(8.0,256)) = 20
        }
        SubShader
        {
            Pass{
                Tags { "LightMode" = "ForwardBase" }
    
                CGPROGRAM
                #pragma vertex vert
                #pragma fragment frag
                #include "Lighting.cginc"
    
                fixed4 _Diffuse;
                fixed4 _Specular;
                float _Gloss;
    
                struct a2v{
                    float4 vertex : POSITION;
                    float3 normal : NORMAL;
                };
                struct v2f{
                    float4 pos : SV_POSITION;
                    float3 worldNormal : TEXCOORD0;
                    float3 worldPos : TEXCOORD1;
                };
    
                v2f vert(a2v v){
                    v2f o;
                    o.pos = UnityObjectToClipPos( v.vertex);
                    o.worldNormal = mul(v.normal , (float3x3)unity_WorldToObject);
                    o.worldPos = mul(unity_ObjectToWorld , v.vertex).xyz;
                    return o;
                }
    
                fixed4 frag(v2f i) : SV_Target{
                    fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
                    fixed3 worldNormal = normalize(i.worldNormal);
                    fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
                    fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
                    fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
                    fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
                    fixed3 halfDir = normalize(worldLightDir + viewDir);
                    fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(max(0,dot(worldNormal , halfDir)) , _Gloss);
                    return fixed4(ambient + diffuse + specular , 1.0);
                }
    
    
                ENDCG
            }
            
        }
        Fallback "Specular"
    }
    
    

    最后

    三种类型高光反射的效果对比
    从左到右分别是 逐顶点高光反射、逐像素高光反射、Blinn-Phong光照模型

    image

    可以看出,Blinn-Phong模型的高光反射部分看起来更大更亮,在实际渲染中,绝大多数情况也都会选择Blinn-Phong光照模型

    划重点

    使用 normalize(_WorldSpaceLightPos0.xyz);来得到光源方向

    使用 normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);来得到视角方向

    本文所写内容参考《UnityShader 入门精要》。

    原文地址 : Kelo'Blog

    相关文章

      网友评论

        本文标题:Unity-Shader(三)高光反射&Blinn-Ph

        本文链接:https://www.haomeiwen.com/subject/auzbwftx.html