突然间发现,我一做热图就用pheatmap几乎不存在第二个选项了。是时候跑一遍pheatmap的demo了.
Examples
# Create test matrix
test = matrix(rnorm(200), 20, 10)
test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
colnames(test) = paste("Test", 1:10, sep = "")
rownames(test) = paste("Gene", 1:20, sep = "")
# Draw heatmaps
pheatmap(test)
pheatmap(test, kmeans_k = 2)
scale是一个值得注意的参数,它旨在说明你想表达什么。关于聚类的几个参数也需要注意。
pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
颜色色设定。
pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
pheatmap(test, cluster_row = FALSE)
pheatmap(test, legend = FALSE)
Show text within cells
显示标签。
pheatmap(test, display_numbers = TRUE)
pheatmap(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test)))
pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0", "1e-4", "1e-3", "1e-2", "1e-1", "1"))
Fix cell sizes and save to file with correct size
pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf")
Generate annotations for rows and columns
annotation_col = data.frame(
CellType = factor(rep(c("CT1", "CT2"), 5)),
Time = 1:5
)
rownames(annotation_col) = paste("Test", 1:10, sep = "")
annotation_row = data.frame(
GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6)))
)
rownames(annotation_row) = paste("Gene", 1:20, sep = "")
# Display row and color annotations
pheatmap(test, annotation_col = annotation_col)
pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE)
pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row)
# Change angle of text in the columns
pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, angle_col = "45")
Specify colors
ann_colors = list(
Time = c("white", "firebrick"),
CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"),
GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")
)
pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title")
pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row,
annotation_colors = ann_colors)
pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2])
# Gaps in heatmaps
pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))
pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14),
cutree_col = 2)
Show custom strings as row/col names
labels_row = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "",
"", "", "Il10", "Il15", "Il1b")
pheatmap(test, annotation_col = annotation_col, labels_row = labels_row)
Specifying clustering from distance matrix
drows = dist(test, method = "minkowski")
dcols = dist(t(test), method = "minkowski")
pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
Modify ordering of the clusters using clustering callback option
callback = function(hc, mat){
sv = svd(t(mat))$v[,1]
dend = reorder(as.dendrogram(hc), wts = sv)
as.hclust(dend)
}
pheatmap(test, clustering_callback = callback)
Make heatmaps in R with pheatmap
set.seed(42)
random_string <- function(n) {
substr(paste(sample(letters), collapse = ""), 1, n)
}
mat <- matrix(rgamma(1000, shape = 1) * 5, ncol = 50)
colnames(mat) <- paste(
rep(1:3, each = ncol(mat) / 3),
replicate(ncol(mat), random_string(5)),
sep = ""
)
rownames(mat) <- replicate(nrow(mat), random_string(3))
col_groups <- substr(colnames(mat), 1, 1)
table(col_groups)
mat[,col_groups == "1"] <- mat[,col_groups == "1"] * 5
library(ggplot2)
# Set the theme for all the following plots.
theme_set(theme_bw(base_size = 16))
dat <- data.frame(values = as.numeric(mat))
ggplot(dat, aes(values)) + geom_density(bw = "SJ")
ibrary(pheatmap)
library(RColorBrewer)
library(viridis)
# Data frame with column annotations.
mat_col <- data.frame(group = col_groups)
rownames(mat_col) <- colnames(mat)
# List with colors for each annotation.
mat_colors <- list(group = brewer.pal(3, "Set1"))
names(mat_colors$group) <- unique(col_groups)
pheatmap(
mat = mat,
color = inferno(10),
border_color = NA,
show_colnames = FALSE,
show_rownames = FALSE,
annotation_col = mat_col,
annotation_colors = mat_colors,
drop_levels = TRUE,
fontsize = 14,
main = "Default Heatmap"
)
mat_breaks <- seq(min(mat), max(mat), length.out = 10)
## ----uniform-color-breaks-detail, fig.height=2, echo=FALSE---------------
dat_colors <- data.frame(
xmin = mat_breaks[1:(length(mat_breaks)-1)],
xmax = mat_breaks[2:length(mat_breaks)],
ymin = 0,
ymax = max(density(mat, bw = "SJ")$y),
fill = rev(inferno(length(mat_breaks) - 1)),
stringsAsFactors = FALSE
)
ggplot() +
geom_rect(
data = dat_colors,
mapping = aes(
xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill
)
) +
geom_density(
data = dat,
mapping = aes(values),
bw = "SJ", color = "cyan"
) +
scale_fill_manual(values = dat_colors$fill) +
theme(legend.position = "none") +
labs(title = "Uniform breaks")
dat2 <- as.data.frame(table(cut(
mat, mat_breaks
)))
dat2$fill <- inferno(nrow(dat2))
ggplot() +
geom_bar(
data = dat2,
mapping = aes(x = Var1, weight = Freq, fill = Var1),
color = "black", size = 0.1
) +
coord_flip() +
scale_fill_manual(values = dat2$fill) +
theme(legend.position = "none") +
labs(y = "data points", x = "breaks",
title = "Number of data points per color")
quantile_breaks <- function(xs, n = 10) {
breaks <- quantile(xs, probs = seq(0, 1, length.out = n))
breaks[!duplicated(breaks)]
}
mat_breaks <- quantile_breaks(mat, n = 11)
## ----quantile-color-breaks-detail, fig.height=2, echo=FALSE--------------
dat_colors <- data.frame(
xmin = mat_breaks[1:(length(mat_breaks)-1)],
xmax = mat_breaks[2:length(mat_breaks)],
ymin = 0,
ymax = max(density(mat, bw = "SJ")$y),
fill = rev(inferno(length(mat_breaks) - 1)),
stringsAsFactors = FALSE
)
ggplot() +
geom_rect(
data = dat_colors,
mapping = aes(
xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill
)
) +
geom_density(
data = dat,
mapping = aes(values),
bw = "SJ", color = "cyan"
) +
scale_fill_manual(values = dat_colors$fill) +
theme(legend.position = "none") +
labs(title = "Quantile breaks")
dat2 <- as.data.frame(table(cut(
mat, mat_breaks
)))
dat2$fill <- inferno(nrow(dat2))
ggplot() +
geom_bar(
data = dat2,
mapping = aes(x = Var1, weight = Freq, fill = Var1),
color = "black", size = 0.1
) +
coord_flip() +
scale_fill_manual(values = dat2$fill) +
theme(legend.position = "none") +
labs(y = "data points", x = "breaks",
title = "Number of data points per color")
pheatmap(
mat = mat,
color = inferno(length(mat_breaks) - 1),
breaks = mat_breaks,
border_color = NA,
show_colnames = FALSE,
show_rownames = FALSE,
annotation_col = mat_col,
annotation_colors = mat_colors,
drop_levels = TRUE,
fontsize = 14,
main = "Quantile Color Scale"
)
pheatmap(
mat = log10(mat),
color = inferno(10),
border_color = NA,
show_colnames = FALSE,
show_rownames = FALSE,
annotation_col = mat_col,
annotation_colors = mat_colors,
drop_levels = TRUE,
fontsize = 14,
main = "Log10 Transformed Values"
)
mat_cluster_cols <- hclust(dist(t(mat)))
plot(mat_cluster_cols, main = "Unsorted Dendrogram", xlab = "", sub = "")
#'
#'
#' Let's flip the branches to sort the dendrogram. The most similar
#' columns will appear clustered toward the left side of the plot. The columns
#' that are more distant from each other will appear clustered toward the right
#' side of the plot.
#'
#'
## ----hclust-dendsort-example---------------------------------------------
# install.packages("dendsort")
library(dendsort)
sort_hclust <- function(...) as.hclust(dendsort(as.dendrogram(...)))
mat_cluster_cols <- sort_hclust(mat_cluster_cols)
plot(mat_cluster_cols, main = "Sorted Dendrogram", xlab = "", sub = "")
mat_cluster_rows <- sort_hclust(hclust(dist(mat)))
pheatmap(
mat = mat,
color = inferno(length(mat_breaks) - 1),
breaks = mat_breaks,
border_color = NA,
cluster_cols = mat_cluster_cols,
cluster_rows = mat_cluster_rows,
show_colnames = FALSE,
show_rownames = FALSE,
annotation_col = mat_col,
annotation_colors = mat_colors,
drop_levels = TRUE,
fontsize = 14,
main = "Sorted Dendrograms"
)
draw_colnames_45 <- function (coln, gaps, ...) {
coord <- pheatmap:::find_coordinates(length(coln), gaps)
x <- coord$coord - 0.5 * coord$size
res <- grid::textGrob(
coln, x = x, y = unit(1, "npc") - unit(3,"bigpts"),
vjust = 0.75, hjust = 1, rot = 45, gp = grid::gpar(...)
)
return(res)
}
assignInNamespace(
x = "draw_colnames",
value = "draw_colnames_45",
ns = asNamespace("pheatmap")
)
pheatmap(
mat = mat,
color = inferno(length(mat_breaks) - 1),
breaks = mat_breaks,
border_color = NA,
cluster_cols = mat_cluster_cols,
cluster_rows = mat_cluster_rows,
cellwidth = 20,
show_colnames = TRUE,
show_rownames = FALSE,
annotation_col = mat_col,
annotation_colors = mat_colors,
drop_levels = TRUE,
fontsize = 14,
main = "Rotated Column Names"
)
# Draw heatmaps
pheatmap(test)
min(test)
bk <- c(seq(-.25,0,by=0.001),seq(0.01,8,by=0.01))
length(bk)
which(bk==0)
# 做热图:
pheatmap(test,
scale = "none",
color = c(colorRampPalette(colors = c("blue","white"))(length(bk)/4.2),colorRampPalette(colors = c("white","red"))(length(bk)/1.32)),
legend_breaks=seq(-.25,8,1),breaks=bk
)
网友评论