源码分析之ThreadPoolExecutor

作者: 特立独行的猪手 | 来源:发表于2017-04-07 16:54 被阅读196次

    线程池在多线程编程的中可谓是个利器,使用线程池会大大提高多线程的效率。原因是使用线程池相对于new Thread有效避免了线程创建和销毁的开销。

    Java中一般来说通过Executors来创建所需要的线程池,如:Executors.newFixedThreadPoolExecutors.newScheduledThreadPool等等。而其中一种主要的实现就是ThreadPoolExecutorThreadPoolExecutorJ.U.C包下的,当然也是出自大神Doug Lea之手。

    ThreadPoolExecutor 结构

    ThreadPoolExecutor类结构ThreadPoolExecutor类结构

    如上图所示,ThreadPoolExecutor类大致结构如上图所示。Executor接口只有一个execute方法。ExecutorSerivce接口在Executor的基础上提供了对任务执行的管理,如:shutdown方法。AbstractExecutorService是针对其中invokeXXXsubmit做了默认的实现。真正的execute将由ThreadPoolExecutor自身实现。

    ThreadPoolExecutor还有几个内部类:AbortPolicyDiscardPolicyDiscardOldestPolicyCallerRunsPolicy。这几个类的作用是当线程池承载很多任务之后,超过maximumPoolSize的数量,无法继续接受任务的时候,提供了不同的拒绝策略。

    Worker类也是ThreadPoolExecutor的内部类,实现Runnable接口,提供了工作线程的实现。后面会详细分析这个类的实现。

    ThreadPoolExecutor类提供了4个构造方法。其中最核心的构造方法如下所示:

        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    

    参数含义如下:

    参数 含义
    corePoolSize 核心线程池大小
    maximumPoolSize 最大线程池大小
    keepAliveTime 超过corePoolSize数量的空闲线程最大存活时间
    corePoolSize keepAliveTime 时间单位
    workQueue 工作队列
    ThreadFactory 线程工厂
    RejectedExecutionHandler 拒绝策略,默认拒绝策略:AbortPolicy

    ThreadPoolExecutor 类变量

        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
        
    

    AtomicInteger ctl

    ctl是一个AtomicInteger修饰的变量,用来保存2个变量:

    • workerCount: 线程池中活动线程的数量
    • runState:线程池的运行状态

    workerCount

    workerCount占用低29位存线程数,workerCount代表了线程池活动的线程数量,最小数量是0,最大的数量是(1 << COUNT_BITS) - 1 (536870911);

    1 << COUNT_BITS :
    
    00000000 00000000 00000000 00000001 --> 00100000 00000000 00000000 00000000
    
    (1 << COUNT_BITS) - 1 :
    
    00100000 00000000 00000000 00000000 --> 00011111 11111111 11111111 11111111
    
    
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    

    workerCountOf方法是用从ctl中解析出workerCount的值来。由于CAPACITY高3位是000ctl的值与CAPACITY&操作的时候,高3位将被舍弃;由于CAPACITY低29位是全是1&操作会保持原值,这样workerCount的值就从ctl中解析出来了。

    runState

    runState占用高3位存线程状态,共有5个值:

    • RUNNING(-536870912):接受新任务,并处理队列任务
    • SHUTDOWN(0): 不接受新任务,但会处理队列中的任务
    • STOP(536870912): 不接受新任务,不会处理队列任务,中断正在处理的任务
    • TIDYING(1073741824): 所有任务已结束,workerCount为0,线程过渡到TIDYING状态,将调用terminated()方法
    • TERMINATED(1610612736): terminated()方法已经完成
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    

    runStateOf方法的作用是解析出runState的值。~CAPACITY将反转CAPACITY的值,也就是CAPACITY的高3位全部为1,低29位全部为0。如此ctl & ~CAPACITY 就会送ctl中解析出runState的值。

    worker 类

    线程池维护的是HashSet<Worker> workers,一个由Worker对象组成的HashSet

        // 继承AQS,实现Runnable接口
        private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            // 处理任务的线程
            final Thread thread;
            // worker 传入的任务
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                // 创建一个任务线程
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    
    

    Worker继承与AQS,主要想利用AQS独占所机制,来标示线程是否空闲。后续的shutdown方法在执行时候,判断线程是否空闲,tryLock来实现的。同样可以看到在Worker在初始化的时候将state设置为-1,这也是为了避免worker在执行前被中断。

    Worker继承与Runnable,当worker启动时候就会调用run方法。Worker类的run方法调用了runWorker方法;

    final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            // 将state设置为0,允许中断
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                // task为空,则调用getTask(),从workQueue取出新的task
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    // 线程池如果是STOP状态,要中断当前线程
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        // 将task设置为null,循环操作
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    
    

    execute 方法

    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
                
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    execute主要分3个步骤:

    • 当活动线程小于corePoolSize的值,将会调用addWorker创建新的任务线程;
    • 如果任务可以成功被加入至workQueue,这是将再次获取ctl的值做双重校验,如果线程池已经shutdown,将从workQueue移除并拒绝该任务。
    • 如果任务队列加入失败,则拒绝任务。

    addWorker 方法

      private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                // 线程池状态大于SHUTDOWN值将不再接受新的任务,创建线程。
                // rs == SHUTDOWN or  firstTask == null or workQueue.isEmpty() 都不再接受任务
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    // 可用线程数不足,分配任务失败
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    // CAS操作增加workerCount的值,增加成功跳出循环
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    // 线程池状态变化则重试
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
            // workerCount增加成功进入下面的逻辑
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                             // 将任务线程添加到线程池中
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        // 启动任务线程
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    // 任务线程启动失败调用addWorkerFailed,将线程从线程池移除,将workerCount -1
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    shutdown 方法

        public void shutdown() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                // 设置线程池状态为:SHUTDOWN
                advanceRunState(SHUTDOWN);
                // 中断所有任务线程
                interruptIdleWorkers();
                onShutdown(); // hook for ScheduledThreadPoolExecutor
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
        }
    

    调用线程池shutdown方法,将不再接受新的任务。首先会调用checkShutdownAccess方法检验是否具有线程shutdown的权限,然后将线程池的状态设置为SHUTDOWN,最后中断空闲线程,这里的中断是用Thread.interrupt()实现的,所以不会影响正在执行的线程,正在执行的的任务将会继续执行。

    shutdownNow 方法

        public List<Runnable> shutdownNow() {
            List<Runnable> tasks;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                // 将线程池状态设置为:STOP
                advanceRunState(STOP);
                // 中断所有线程
                interruptWorkers();
                // 获取队列中尚未被执行的任务
                tasks = drainQueue();
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
            return tasks;
        }
    

    shutdownNow方法与shutdown方法类似,不同是shutdownNow会将线程池的状态设置STOP,在中断过程中,少了tryLock获取锁的操作,所以不管线程是否空闲都将被中断,中断所有线程,但也不会强行终止正在执行的线程。最后返回阻塞队列中没有被执行的任务list

    相关文章

      网友评论

        本文标题:源码分析之ThreadPoolExecutor

        本文链接:https://www.haomeiwen.com/subject/kzihattx.html