源码分析之ReentrantLock

作者: 特立独行的猪手 | 来源:发表于2017-03-22 19:27 被阅读300次

    ReentrantLock类是属于java.util.concurrent的。实现了Lock, java.io.Serializable两个接口,是一个可重入的互斥锁,所谓可重入是线程可以重复获取已经持有的锁。

     /**
         * Creates an instance of {@code ReentrantLock}.
         * This is equivalent to using {@code ReentrantLock(false)}.
         */
        public ReentrantLock() {
            sync = new NonfairSync();
        }
    
        /**
         * Creates an instance of {@code ReentrantLock} with the
         * given fairness policy.
         *
         * @param fair {@code true} if this lock should use a fair ordering policy
         */
        public ReentrantLock(boolean fair) {
            sync = fair ? new FairSync() : new NonfairSync();
        }
    
    abstract static class Sync extends AbstractQueuedSynchronizer
    

    ReentrantLock实现锁的机制是通过Sync进行操作的。Sync类是继承AbstractQueuedSynchronizer类的。这也就表明ReentrantLock是基于AQS的实现的。‘

    Sync,FairSyncNonFairSync都是ReentrantLock的静态内部类。FairSyncNonFairSync又是Sync具体实现类,分别对应的是公平锁和非公平锁,公平主要是指按照FIFO原则顺序获取锁,非公平可以根据定义的规则来选择获得锁。

    NonFairSync 源码分析

    非公平锁NonFairSyncReentrantLock默认的实现方式。这里可以看一下它的lock实现过程:

            /**
             * Performs lock.  Try immediate barge, backing up to normal
             * acquire on failure.
             */
            final void lock() {
                if (compareAndSetState(0, 1))
                    setExclusiveOwnerThread(Thread.currentThread());
                else
                    acquire(1);
            }
    
    
    • 首先通过CAS更新state状态,如果更新成功,则获取锁,设定当前线程为锁的拥有者。
        protected final boolean compareAndSetState(int expect, int update) {
            // See below for intrinsics setup to support this
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
        }
    
    • 如果更新失败,表明当前锁被其他线程占有。则会调用acquire(1)方法。acquire具体实现如下:
        public final void acquire(int arg) {
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
        }
    
        protected final boolean tryAcquire(int acquires) {
                return nonfairTryAcquire(acquires);
            }
            
    

    tryAcquire过程,将再次尝试获取锁,其中tryAcquire在静态内部类NonfairSync类中被重写,具体的实现是SyncnonfairTryAcquire方法:

            final boolean nonfairTryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
                    if (compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0) // overflow
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }
    

    其主要过程是先获取state的值,如果等于0,则通过CAS更新state的值。如果state不为0,则判断当前线程是否是锁的持有者,如果是,则将state加1,返回true

    如果tryAcquire仍然失败的话,首先会调用addWaiter(Node.EXCLUSIVE),将当前线程加入到等待队列的尾部。然后会调用acquireQueued方法,acquireQueued的作用主要是用来阻塞线程的:

        /**
         * Acquires in exclusive uninterruptible mode for thread already in
         * queue. Used by condition wait methods as well as acquire.
         *
         * @param node the node
         * @param arg the acquire argument
         * @return {@code true} if interrupted while waiting
         */
        final boolean acquireQueued(final Node node, int arg) {
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
                    final Node p = node.predecessor();
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }
    

    这里是一个循环自旋操作,在阻塞线程之前,首先判断线程自身前面的节点是否是head节点,如果是,则重新去获取锁,获取成功后,返回,并取消不断获取的过程。如果不是,调用shouldParkAfterFailedAcquire方法去判断是否应该阻塞当前线程,主要是通过节点的waitStatus来进行判断。

    FairSync 源码分析

    公平锁FairSync和非公平锁NonFairSync的实现很相似,这里比较一下两者的差别。

    • FairSynclock方法中没有像NonFairSync中先去通过CAS操作state去获取锁,而是直接通过tryAcquire去获取锁。
            final void lock() {
                acquire(1);
            }
    
    • FairSync版本tryAcquire在获取锁的过程中,需要先判断队列中是否有其他等待的线程,如果没有,才回去尝试获取锁。
            /**
             * Fair version of tryAcquire.  Don't grant access unless
             * recursive call or no waiters or is first.
             */
            protected final boolean tryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
                    if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0)
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }
    

    unlock() 释放锁

    释放锁没有区分公平和非公平的。主要的工作就是减小state的值。当state等0的时候,释放锁并唤醒队里中其他线程来获取锁。

            public void unlock() {
                sync.release(1);
            }
    
            public final boolean release(int arg) {
                if (tryRelease(arg)) {
                    Node h = head;
                    if (h != null && h.waitStatus != 0)
                        unparkSuccessor(h);
                    return true;
                }
                return false;
            }
    
    
            protected final boolean tryRelease(int releases) {
                int c = getState() - releases;
                if (Thread.currentThread() != getExclusiveOwnerThread())
                    throw new IllegalMonitorStateException();
                boolean free = false;
                if (c == 0) {
                    free = true;
                    setExclusiveOwnerThread(null);
                }
                setState(c);
                return free;
            }
    

    总结

    • ReentrantLock是通过AQSstate字段来判断所是否被占用。
    • 公平非公平的差别是在于获取锁的方式是否是按照顺序的。
    • state操作是通过CAS实现的。通过队列来实现因抢占锁被阻塞的队列。
    • 在阻塞线程的过程中,AQS有自旋的过程,并非是获取不到锁就直接阻塞。

    如有纰漏,还望指正。

    相关文章

      网友评论

        本文标题:源码分析之ReentrantLock

        本文链接:https://www.haomeiwen.com/subject/rqcanttx.html