java线程池的那些事

作者: Tifkingsly | 来源:发表于2018-06-12 00:40 被阅读48次

多线程开发越来越常见,开发者常常使用多线程完成一些耗时操作,通过并发来提高系统的响应速度。尤其是在Android移动端开发,为了提升用户体验,常常将一些操作放在异步线程中完成。但是,如果一味滥用多线程,会造成系统资源浪费,而且常常会出现并发问题。因此线程的管理就是一个非常重要的事,线程池也就应运而生。

线程池使用意义:

1)降低系统资源的消耗,线程池中实现线程的复用技术减少无限量的线程创建,减少线程创建和销毁带来的资源浪费;
2)提高响应速度,当有异步任务需要执行时,若线程中有空闲线程存在那么可以快速响应,无需新创建线程;
3)提高线程的可管理性,线程本身是一种稀缺资源,无节制的创建线程除了会造成资源浪费,而且会降低系统稳定性,带来许多并发问题。线程池对线程进行统一的管理、分配。
线程池的好处已经显而易见,若是系统中频繁创建线程来执行任务可以采用线程池技术;反之,若频率相对较低也不需要强行使用线程池。总体而言,根据系统的设计来定方案。

线程池的使用:

1、创建线程池,解析其构造函数:
    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code threadFactory} or {@code handler} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

1)corePoolSize(核心线程数):可以理解为线程池的基本线程数量,正常情况下,如果线程池的线程数量小于核心线程数,当有任务提交到线程池执行时,会直接创建一个线程执行。当线程数量大于等于corePoolSize时便不再直接创建线程。
2)maximumPoolSize(最大线程数):线程池可以容纳的最大线程数量,当线程池中的线程数量大于等于maximumPoolSize时便交给饱和策略,不可以再创建新的线程。
3)keepAliveTime(线程保留时间):线程池的工作线程执行完任务后,可以保留空闲状态的时间,用于控制空闲线程的保存时间。当线程数量小于等于corePoolSize时,该时间设置之后无用。
4)unit(保留时间单位):线程存活时间的单位。天、小时、分、秒等。
5)workQueue(任务队列):用于保存等待执行任务的阻塞队列。可以选择以下集中队列:
ArrayBlockingQueue:基于数组实现的有界阻塞队列,遵循FIFO原则;
LinkedBlockingQueue:基于链表实现的有界阻塞队列,遵循FIFO原则。吞吐量高于ArrayBlockingQueue。Executors.newFixedThreadPool()使用该队列。

public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

SynchronousQueue:不存储元素的阻塞队列,每当任务想要插入时,就会进入阻塞状态,只有等到另外一个线程调用移除操作才会被唤醒。吞吐量高于LinkedBlockingQueue,Executors.newCachedThreadPool()使用该队列。

    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

PriorityBlockingQueue:具有优先级的无限阻塞队列。

6)threadFactory(线程工厂):用于创建线程工厂类,通常情况下可以不指定,因为有另外一个构造方法指定类默认的线程工厂,Executors.defaultThreadFactory()。

    static class DefaultThreadFactory implements ThreadFactory {
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;

        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null) ? s.getThreadGroup() :
                                  Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                          poolNumber.getAndIncrement() +
                         "-thread-";
        }

        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);
            return t;
        }
    }

7)handler(饱和处理策略):当线程池的工作队列已满,而且线程数大于等于maximumPoolSize时,若再提交新的任务,则会将其交给饱和策略处理。java中提供了几种处理策略,默认策略为AbortPolicy。
AbortPolicy:直接抛出异常。
CallerRunsPolicy:只用调用者所在线程来运行任务。
DiscardOldestPolicy:丢弃队列中最近的一个任务,并执行当前任务。
DiscardPolicy:不处理,不丢弃。

2、向线程池提交任务:

execute()方法:

        threadPoolExecutor.execute(new Runnable() {
            @Override
            public void run() {
                System.out.println("run task by execute");
            }
        });

submit()方法:

        Future<?> future = threadPoolExecutor.submit(new Runnable() {
            @Override
            public void run() {
                System.out.println("run task by submit");
            }
        });

上述2个方法均可以向线程池提交任务,其最大区别在于是否需要返回值。execute方法没有返回值,submit方法会返回一个Future对象,该对象可以获取任务执行的结果。

3、线程池关闭:

线程池关闭是通过遍历线程中所有的工作线程,然后逐个调用线程的interrupt方法中断线程,因此并不能保证所有线程都能停止,不响应中断的任务则无法终止。
1)shutdown():将线程池的状态设置成SHUTDOWN状态,然后中断所有没有执行任务的线程(中断空闲线程)
2)shutdownNow():将线程池的状态设置成STOP状态,尝试停止所有正在执行或者暂停任务的线程(所有线程),并返回等待执行任务的列表。

线程池原理分析:

流程图
源码解析:
    /**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        //判断当前线程数量是否小于核心线程数量
        if (workerCountOf(c) < corePoolSize) {
            //若小于核心线程数量,创建线程执行
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //将线程加入队列
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        } else if (!addWorker(command, false)){
           //加入到队列失败,则将其交给饱和策略处理
            reject(command);
        }
    }

    /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

     Work类中最终执行任务的方法
    /**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

结束语

相信大家阅读此文之后,对于线程池技术有了一定的了解。与其他技术一样,大家只有在实践中才能真正体会到其妙处,当你感受到之后再回过头去理解它的设计原理便会更加清晰。如果有兴趣可以读一下《java并发编程的艺术》这本书,书中的讲解比文章会更加详细。

相关文章

  • java线程池的那些事

    多线程开发越来越常见,开发者常常使用多线程完成一些耗时操作,通过并发来提高系统的响应速度。尤其是在Android移...

  • Java相关面试问题

    线程,多线程,线程池的那些事 Java中的线程的生命周期大体可分为5种状态:新建、可运行、运行、阻塞、死亡。 1、...

  • 聊聊Java线程池那些事

    为什么使用线程池 线程池作用就是通过限制系统中执行线程的数量从而达到优化资源分配的目的。 控制执行线程的数量 假如...

  • 分析jdk-1.8-ForkJoinPool实现原理(上)

    Java并发编程源码分析系列: 分析Java线程池的创建 分析Java线程池执行原理 分析Java线程池Calla...

  • 分析jdk-1.8-ForkJoinPool实现原理(下)

    Java并发编程源码分析系列: 分析Java线程池的创建 分析Java线程池执行原理 分析Java线程池Calla...

  • 分析ReentrantLock的实现原理

    Java并发编程源码分析系列: 分析Java线程池的创建 分析Java线程池执行原理 分析Java线程池Calla...

  • 分析CountDownLatch的实现原理

    Java并发编程源码分析系列: 分析Java线程池的创建 分析Java线程池执行原理 分析Java线程池Calla...

  • java基础-多线程

    java线程池的实现 ThreadPoolExecutor java线程池几个参数 corePoolSize当线程...

  • java 线程池 & futureTask

    ================ 线程池 ============================= Java线程...

  • 分析Java线程池Callable任务执行原理

    Java并发编程源码分析系列: 分析Java线程池的创建 分析Java线程池执行原理 上一篇分析了线程池的执行原理...

网友评论

    本文标题:java线程池的那些事

    本文链接:https://www.haomeiwen.com/subject/lvyceftx.html