Spark JDBC系列--取数的四种方式

作者: wuli_小博 | 来源:发表于2017-12-01 12:04 被阅读111次

    本文旨在介绍 Spark 通过JDBC读取数据库数据的四种API

    调用前准备

    对于不同的数据库,需要在spark的环境中添加对应的driver包,如:

    Oracle:

    export  SPARK_CLASSPATH=$SPARK_HOME/ojdbcxx.jar (具体版本号自定)
    

    MySQL:

    export  SPARK_CLASSPATH=/path/mysql-connector-java-5.x.x.jar (具体版本号自定)
    

    其他数据库可以参考官方文档:官方JDBC配置文档

    四种API简介

    1.单分区模式

    函数:

    def jdbc(url: String, table: String, properties: Properties): DataFrame
    

    使用示例:

    val url = "jdbc:mysql://mysqlHost:3306/database"
    val tableName = "table"
    
    // 设置连接用户&密码
    val prop = new java.util.Properties
    prop.setProperty("user","username")
    prop.setProperty("password","pwd")
    
    // 取得该表数据
    val jdbcDF = sqlContext.read.jdbc(url,tableName,prop)
    
    // 一些操作
    ....
    

    从入参可以看出,只需要传入JDBC URL、表名及对应的账号密码Properties即可。但是计算此DF的分区数后发现,这种不负责任的写法,并发数是1

    jdbcDF.rdd.partitions.size=1
    

    操作大数据集时,spark对MySQL的查询语句等同于可怕的:select * from table; ,而单个分区会把数据都集中在一个executor,当遇到较大数据集时,都会产生不合理的资源占用:MySQL可能hang住,spark可能会OOM,所以不推荐生产环境使用;

    2.指定Long型column字段的分区模式

    函数:

    def jdbc(
      url: String,
      table: String,
      columnName: String,
      lowerBound: Long,
      upperBound: Long,
      numPartitions: Int,
      connectionProperties: Properties): DataFrame
    

    使用id做分片字段的示例:

    val url = "jdbc:mysql://mysqlHost:3306/database"
    val tableName = "table"
    val columnName = "id"
    val lowerBound = getMinId()
    val upperBound = getMaxId()
    val numPartitions = 200
    
    // 设置连接用户&密码
    val prop = new java.util.Properties
    prop.setProperty("user","username")
    prop.setProperty("password","pwd")
    
    // 取得该表数据
    val jdbcDF = sqlContext.read.jdbc(url,tableName, columnName, lowerBound, upperBound,numPartitions,prop)
    
    // 一些操作
    ....
    

    从入参可以看出,通过指定 id 这个数字型的column作为分片键,并设置最大最小值和指定的分区数,可以对数据库的数据进行并发读取。是不是numPartitions传入多少,分区数就一定是多少呢?其实不然,通过对源码的分析可知:

    if upperBound-lowerBound >= numPartitions:
        jdbcDF.rdd.partitions.size = numPartitions
    else
        jdbcDF.rdd.partitions.size = upperBound-lowerBound
    

    拉取数据时,spark会按numPartitions均分最大最小ID,然后进行并发查询,并最终转换成RDD,例如:

    入参为:
    lowerBound=1, upperBound=1000, numPartitions=10
    
    对应查询语句组为:
    JDBCPartition(id < 101 or id is null,0), 
    JDBCPartition(id >= 101 AND id < 201,1), 
    JDBCPartition(id >= 201 AND id < 301,2), 
    JDBCPartition(id >= 301 AND id < 401,3), 
    JDBCPartition(id >= 401 AND id < 501,4), 
    JDBCPartition(id >= 501 AND id < 601,5), 
    JDBCPartition(id >= 601 AND id < 701,6), 
    JDBCPartition(id >= 701 AND id < 801,7), 
    JDBCPartition(id >= 801 AND id < 901,8), 
    JDBCPartition(id >= 901,9)
    

    建议在使用此方式进行分片时,需要评估好 numPartitions 的个数,防止单片数据过大;同时需要column字段的索引建立情况,防止查询语句出现慢SQL影响取数效率。
    如果column的数字是离散型的,为了防止拉取时出现过多空分区,以及不必要的一些数据倾斜,需要使用特殊手段进行处理,具体可以参考Spark JDBC系列--读取优化

    3.高自由度的分区模式

    函数:

    def jdbc(
      url: String,
      table: String,
      predicates: Array[String],
      connectionProperties: Properties): DataFrame
    

    使用给定分区数组的示例:

      /**
       * 将近90天的数据进行分区读取
       * 每一天作为一个分区,例如
       * Array(
       * "2015-09-17" -> "2015-09-18",
       * "2015-09-18" -> "2015-09-19",
       * ...)
       **/
       def getPredicates = {
        
        val cal = Calendar.getInstance()
        cal.add(Calendar.DATE, -90)
        val array = ArrayBuffer[(String,String)]()
        for (i <- 0 until 90) {
          val start = new SimpleDateFormat("yyyy-MM-dd").format(cal.getTime())
          cal.add(Calendar.DATE, +1)
          val end = new SimpleDateFormat("yyyy-MM-dd").format(cal.getTime())
          array += start -> end
        }
        val predicates = array.map {
          case (start, end) => s"gmt_create >= '$start' AND gmt_create < '$end'"
        }
        
        predicates.toArray
        }
        
        val predicates = getPredicates
        //链接操作
        ...
    

    从函数可以看出,分区数组是多个并行的自定义where语句,且分区数为数据size:

    jdbcDF.rdd.partitions.size = predicates.size
    

    建议在使用此方式进行分片时,需要评估好 predicates.size 的个数,防止防止单片数据过大;同时需要自定义where语句的查询效率,防止查询语句出现慢SQL影响取数效率。

    4.自定义option参数模式

    函数示例:

    val jdbcDF = sparkSession.sqlContext.read.format("jdbc")
      .option("url", url)
      .option("driver", "com.mysql.jdbc.Driver")
      .option("dbtable", "table")
      .option("user", "user")
      .option("partitionColumn", "id")
      .option("lowerBound", 1)
      .option("upperBound", 10000)
      .option("fetchsize", 100)
      .option("xxx", "xxx")
      .load()
    

    从函数可以看出,option模式其实是一种开放接口,spark会根据具体的参数,来决定使用上述三种方式中的某一种。

    所有支持的参数具体可以参考官方文档:官方JDBC配置文档 此处附上截图:

    可用参数参考

    结语

    JDBC的读取性能受很多条件影响,需要根据不同的数据库,表,索引,数据量,spark集群的executor情况等综合考虑,线上环境的操作,建议进行读写分离,即读备库,写主库。

    相关文章

      网友评论

      本文标题:Spark JDBC系列--取数的四种方式

      本文链接:https://www.haomeiwen.com/subject/nhvbbxtx.html