博文出处:View的工作原理,欢迎大家关注我的博客,谢谢!
注:本文分析的源码基于 Android API 25
View绘制的起点
WindowManagerGlobal
addView(View view, ViewGroup.LayoutParams params, Display display, Window parentWindow)
在 WindowManagerGlobal
的 addView(View view, ViewGroup.LayoutParams params, Display display, Window parentWindow)
方法中,创建了 ViewRootImpl
对象,将 ViewRootImpl
和 DecorView
相关联:
root = new ViewRootImpl(view.getContext(), display);
...
// view 是 PhoneWindow 的 DecorView
root.setView(view, wparams, panelParentView);
创建好了 root
之后,调用了 ViewRootImpl
的 setView(View view, WindowManager.LayoutParams attrs, View panelParentView)
方法。
将 DecorView 和 ViewRootImpl 相关联。
ViewRootImpl
setView(View view, WindowManager.LayoutParams attrs, View panelParentView)
public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
synchronized (this) {
if (mView == null) {
// 将 decorView 设置给全局的 mView
mView = view;
...
// 标记已经添加了 decorView
mAdded = true;
...
// 第一次发起布局,在添加到 WindowManager 之前
// 确保在接收其他系统事件之前完成重新布局
requestLayout();
...
// 利用 mWindowSession 以跨进程的方式向 WMS 发起一个调用,从而将DecorView 最终添加到 Window 上
try {
mOrigWindowType = mWindowAttributes.type;
mAttachInfo.mRecomputeGlobalAttributes = true;
collectViewAttributes();
res = mWindowSession.addToDisplay(mWindow, mSeq, mWindowAttributes, getHostVisibility(), mDisplay.getDisplayId(), mAttachInfo.mContentInsets, mAttachInfo.mStableInsets, mAttachInfo.mOutsets, mInputChannel);
}
...
}
}
}
在 setView(View view, WindowManager.LayoutParams attrs, View panelParentView)
方法中,主要做的事情有:
- 保存 DecorView
- 第一次调用
requestLayout()
,发起整个 View 的绘制流程 - 将 View 添加到 Window 上去
而在这,我们重点关注 requestLayout()
方法,因为恰恰这句代码引发了整个 View 的绘制。
requestLayout()
@Override
public void requestLayout() {
if (!mHandlingLayoutInLayoutRequest) {
// 检查当前线程
checkThread();
mLayoutRequested = true;
// 调用绘制
scheduleTraversals();
}
}
在 requestLayout()
中先检查了线程,若 OK 后调用 scheduleTraversals()
。
scheduleTraversals()
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
// 发送消息,调用 mTraversalRunnable
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
final TraversalRunnable mTraversalRunnable = new TraversalRunnable();
final class TraversalRunnable implements Runnable {
@Override
public void run() {
// 内部调用了 performTraversals()
doTraversal();
}
}
在 scheduleTraversals()
中,其实是这样的:
scheduleTraversals() -> 调用 mTraversalRunnable -> doTraversal() -> performTraversals()
所以最后还是要看 performTraversals()
。
performTraversals()
private void performTraversals() {
// 计算 Activity 中 window 的宽高等等
...
if (!mStopped || mReportNextDraw) {
boolean focusChangedDueToTouchMode = ensureTouchModeLocally(
(relayoutResult&WindowManagerGlobal.RELAYOUT_RES_IN_TOUCH_MODE) != 0);
if (focusChangedDueToTouchMode || mWidth != host.getMeasuredWidth()
|| mHeight != host.getMeasuredHeight() || contentInsetsChanged ||
updatedConfiguration) {
// 得到 view 宽高的规格
// mWidth 和 mHeight 即用来描述 Activity 窗口宽度和高度
// lp.width 和 lp.height 就是 DecorView 的宽高
int childWidthMeasureSpec = getRootMeasureSpec(mWidth, lp.width);
int childHeightMeasureSpec = getRootMeasureSpec(mHeight, lp.height);
if (DEBUG_LAYOUT) Log.v(mTag, "Ooops, something changed! mWidth="
+ mWidth + " measuredWidth=" + host.getMeasuredWidth()
+ " mHeight=" + mHeight
+ " measuredHeight=" + host.getMeasuredHeight()
+ " coveredInsetsChanged=" + contentInsetsChanged);
// Ask host how big it wants to be
// 开始执行测量工作,测量是从这里发起的
performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
// Implementation of weights from WindowManager.LayoutParams
// We just grow the dimensions as needed and re-measure if
// needs be
int width = host.getMeasuredWidth();
int height = host.getMeasuredHeight();
boolean measureAgain = false;
// 检查是否需要重新测量
if (lp.horizontalWeight > 0.0f) {
width += (int) ((mWidth - width) * lp.horizontalWeight);
childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(width,
MeasureSpec.EXACTLY);
measureAgain = true;
}
if (lp.verticalWeight > 0.0f) {
height += (int) ((mHeight - height) * lp.verticalWeight);
childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(height,
MeasureSpec.EXACTLY);
measureAgain = true;
}
// 需要再次测量的话,就再执行一遍 performMeasure
if (measureAgain) {
if (DEBUG_LAYOUT) Log.v(mTag,
"And hey let's measure once more: width=" + width
+ " height=" + height);
performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
}
layoutRequested = true;
}
}
...
final boolean didLayout = layoutRequested && (!mStopped || mReportNextDraw);
boolean triggerGlobalLayoutListener = didLayout
|| mAttachInfo.mRecomputeGlobalAttributes;
if (didLayout) {
// 执行布局工作,布局是从这里发起的
performLayout(lp, mWidth, mHeight);
...
if (!cancelDraw && !newSurface) {
if (mPendingTransitions != null && mPendingTransitions.size() > 0) {
for (int i = 0; i < mPendingTransitions.size(); ++i) {
mPendingTransitions.get(i).startChangingAnimations();
}
mPendingTransitions.clear();
}
// 执行绘制工作,绘制是从这里发起的
performDraw();
}
...
}
performTraversals()
方法的代码很长很长,但是我们关注点就可以放在三大流程上。其他的代码因为自己能力欠缺,并不能一一说出这些代码的作用。所以我们接下来就把重点放在:
- getRootMeasureSpec
- performMeasure
- performLayout
- performDraw
三大流程
ViewRootImpl
measureHierarchy(final View host, final WindowManager.LayoutParams lp, final Resources res, final int desiredWindowWidth, final int desiredWindowHeight)
其实在 performTraversals()
中有一句代码
// Ask host how big it wants to be
windowSizeMayChange |= measureHierarchy(host, lp, res,
desiredWindowWidth, desiredWindowHeight);
在 measureHierarchy
方法中已经调用了 performMeasure
来进行测量。不过作用不同,只是为了确定 window 的大小而做的测量辅助。所以可以说,并不算上在三大流程中。
在 measureHierarchy
中,确定了 DecorView 的 MeasureSpec
。其中 childWidthMeasureSpec
和 childHeightMeasureSpec
即为 DecorView 对应的 MeasureSpec
。
// desiredWindowWidth 和 desiredWindowHeight 是屏幕的宽高
childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width);
childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);
performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
getRootMeasureSpec(int windowSize, int rootDimension)
那么就来看看 getRootMeasureSpec
咯。
private static int getRootMeasureSpec(int windowSize, int rootDimension) {
int measureSpec;
switch (rootDimension) {
case ViewGroup.LayoutParams.MATCH_PARENT:
// Window can't resize. Force root view to be windowSize.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
break;
case ViewGroup.LayoutParams.WRAP_CONTENT:
// Window can resize. Set max size for root view.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
break;
default:
// Window wants to be an exact size. Force root view to be that size.
measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
break;
}
return measureSpec;
}
代码很简洁,也很易懂。
- 如果是 MATCH_PARENT ,那么对应的就是窗口大小;
- 如果是 WRAP_CONTENT ,那么不能超过窗口大小;
- 固定大小,那么就是大小就是传入的 lp.width/lp.height 了。
ViewGroup
getChildMeasureSpec(int spec, int padding, int childDimension)
顺便,我们把平时自定义 ViewGroup 计算子 View 测量规格的 getChildMeasureSpec
方法也一起来看看:
public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
// 父容器的 mode
int specMode = MeasureSpec.getMode(spec);
// 父容器的 size
int specSize = MeasureSpec.getSize(spec);
// 子 view 可以使用空间,即父容器的 size - padding
int size = Math.max(0, specSize - padding);
int resultSize = 0;
int resultMode = 0;
switch (specMode) {
// Parent has imposed an exact size on us
case MeasureSpec.EXACTLY:
if (childDimension >= 0) {
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size. So be it.
resultSize = size;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent has imposed a maximum size on us
case MeasureSpec.AT_MOST:
if (childDimension >= 0) {
// Child wants a specific size... so be it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size, but our size is not fixed.
// Constrain child to not be bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
}
break;
// Parent asked to see how big we want to be
case MeasureSpec.UNSPECIFIED:
if (childDimension >= 0) {
// Child wants a specific size... let him have it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
} else if (childDimension == LayoutParams.MATCH_PARENT) {
// Child wants to be our size... find out how big it should
// be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
} else if (childDimension == LayoutParams.WRAP_CONTENT) {
// Child wants to determine its own size.... find out how
// big it should be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
}
break;
}
//noinspection ResourceType
return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
}
上面的 switch/case 代码比较简单,而且容易理解。我们可以整理为一张表格(该表格来自于《Android开发艺术探索》):
measurespec在这里,我们小结一下。对于 DecorView 来说,其 MeasureSpec
是由窗口的大小和自身的 LayoutParams
来共同决定的;而对于普通的 View 来说,其 MeasureSpec
是由父容器的 MeasureSpec
和自身的 LayoutParams
共同决定的。
measure过程
ViewRootImpl
performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec)
分析 measure 过程,我们的起点就是在 ViewRootImpl
的 performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec)
方法中:
private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "measure");
try {
// 进行测量
mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
在 performMeasure
中调用了 measure
方法。说到底,DecorView 只是一个所以我们又要进入 View
类中去看下。
View
measure(int widthMeasureSpec, int heightMeasureSpec)
public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
...
if (forceLayout || needsLayout) {
...
if (cacheIndex < 0 || sIgnoreMeasureCache) {
// measure ourselves, this should set the measured dimension flag back
// 调用 onMeasure
onMeasure(widthMeasureSpec, heightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
} else {
long value = mMeasureCache.valueAt(cacheIndex);
// Casting a long to int drops the high 32 bits, no mask needed
setMeasuredDimensionRaw((int) (value >> 32), (int) value);
mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
...
}
View
的 measure
方法内部是调用了 onMeasure
。所以我们还要接着跟进到 onMeasure
中才行。另外, measure
方法是用 final 修饰的,所以子类是无法进行重写的。
FrameLayout
onMeasure(int widthMeasureSpec, int heightMeasureSpec)
这里小提一下,我们都知道 DecorView 其实是一个 FrameLayout
,所以 onMeasure
应该在 FrameLayout
中去看:
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
int count = getChildCount();
// 判断当前 framelayout 布局的宽高是否至少一个是 match_parent 或者精确值 ,如果是则置 measureMatchParent 为 false .
final boolean measureMatchParentChildren =
MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY ||
MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY;
mMatchParentChildren.clear();
int maxHeight = 0;
int maxWidth = 0;
int childState = 0;
// 遍历不为 GONE 的子 view
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
if (mMeasureAllChildren || child.getVisibility() != GONE) {
// 对每一个子 View 进行测量
measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0);
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
// 寻找子 View 中宽高的最大者,因为如果 FrameLayout 是 wrap_content 属性
// 那么它的宽高取决于子 View 中的宽高最大者
maxWidth = Math.max(maxWidth,
child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin);
maxHeight = Math.max(maxHeight,
child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin);
childState = combineMeasuredStates(childState, child.getMeasuredState());
// 如果 FrameLayout 为 wrap_content 且 子 view 的宽或高为 match_parent ,那么就添加到 mMatchParentChildren 中
if (measureMatchParentChildren) {
if (lp.width == LayoutParams.MATCH_PARENT ||
lp.height == LayoutParams.MATCH_PARENT) {
mMatchParentChildren.add(child);
}
}
}
}
// Account for padding too
maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground();
maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground();
// Check against our minimum height and width
maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());
maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());
// Check against our foreground's minimum height and width
final Drawable drawable = getForeground();
if (drawable != null) {
maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());
maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());
}
//设置测量结果
setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
resolveSizeAndState(maxHeight, heightMeasureSpec,
childState << MEASURED_HEIGHT_STATE_SHIFT));
// 子View中设置为match_parent的个数
count = mMatchParentChildren.size();
// 若 FrameLayout 为 wrap_content 且 count > 1
if (count > 1) {
for (int i = 0; i < count; i++) {
final View child = mMatchParentChildren.get(i);
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
// 如果子 View 的宽度是 match_parent 属性,那么对 childWidthMeasureSpec 修改:
// 把 widthMeasureSpec 的宽度修改为:framelayout总宽度 - padding - margin,模式设置为 EXACTLY
final int childWidthMeasureSpec;
if (lp.width == LayoutParams.MATCH_PARENT) {
final int width = Math.max(0, getMeasuredWidth()
- getPaddingLeftWithForeground() - getPaddingRightWithForeground()
- lp.leftMargin - lp.rightMargin);
childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(
width, MeasureSpec.EXACTLY);
} else {
// 否则就按照正常的来就行了
childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
getPaddingLeftWithForeground() + getPaddingRightWithForeground() +
lp.leftMargin + lp.rightMargin,
lp.width);
}
// 高度同理
final int childHeightMeasureSpec;
if (lp.height == LayoutParams.MATCH_PARENT) {
final int height = Math.max(0, getMeasuredHeight()
- getPaddingTopWithForeground() - getPaddingBottomWithForeground()
- lp.topMargin - lp.bottomMargin);
childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
height, MeasureSpec.EXACTLY);
} else {
childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec,
getPaddingTopWithForeground() + getPaddingBottomWithForeground() +
lp.topMargin + lp.bottomMargin,
lp.height);
}
//对于这部分的子 View 需要重新进行 measure 过程
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
}
}
如果上面 FrameLayout
的 onMeasure
流程没看懂的话也没关系。其实总的来说重要的就只有遍历 child.measure(childWidthMeasureSpec, childHeightMeasureSpec)
这个方法,这是将父容器的 measure 过程传递到子 View 中。
ViewGroup
measureChildWithMargins(View child, int parentWidthMeasureSpec, int widthUsed, int parentHeightMeasureSpec, int heightUsed)
可能有些人也有疑问,在上面 measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0)
后也没看到有 child.measure
的方法啊,这是因为在 measureChildWithMargins
中内部调用了 child.measure
:
protected void measureChildWithMargins(View child,
int parentWidthMeasureSpec, int widthUsed,
int parentHeightMeasureSpec, int heightUsed) {
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
// getChildMeasureSpec 我们上面分析过了
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
+ widthUsed, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
+ heightUsed, lp.height);
// measure 传递给子 View
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
这下明白了吧?父容器就是遍历调用了 child.measure
这个方法将 measure 过程传递给每一个子 View 的。虽然不同的父容器 onMeasure
方法都不一样,但是相同的是,他们都会遍历调用 child.measure
。
View
onMeasure(int widthMeasureSpec, int heightMeasureSpec)
上面我们也讲过,measure
方法内部其实是调用了 onMeasure
,所以子 View 被父容器调用了 measure
后,也会调用属于自己的 onMeasure
方法。那么我们就直接看向 View
的 onMeasure
方法:
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}
onMeasure
方法只有一句代码,所以重点就是 getDefaultSize(int size, int measureSpec)
咯。
getSuggestedMinimumWidth()
内部逻辑:
- 若没有设置背景,就是
android:minWidth
的值; - 若有设置背景,就是 max(android:minWidth, 背景 Drawable 的原始宽度)
getSuggestedMinimumHeight()
也是同理。
getDefaultSize(int size, int measureSpec)
public static int getDefaultSize(int size, int measureSpec) {
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode) {
case MeasureSpec.UNSPECIFIED:
result = size;
break;
// 直接返回 specSize
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
}
return result;
}
从上面我们可以看到:
- 若是 UNSPECIFIED ,则直接返回的就是
getSuggestedMinimumWidth/getSuggestedMinimumHeight
的值; - 若是 AT_MOST/EXACTLY ,直接用的就是 specSize 。
而根据我们之前总结出来的表可知,只要 view 不指定固定大小,那么无论是 AT_MOST 还是 EXACTLY ,都是按照 parentSize 来的。
这也是为什么我们在自定义 View 时,如果不重写 onMeasure(int widthMeasureSpec, int heightMeasureSpec)
,wrap_content 和 match_parent 效果一样的原因。
小结
我们把 measure 过程的代码流程理一下:
ViewRootImpl.performTraversals -> ViewRootImpl.performMeasure -> DecorView.measure -> DecorView.onMeasure -> DecorView.measureChildWithMargins -> ViewGroup.measure -> ViewGroup.onMeasure -> ViewGroup.measureChildWithMargins -> ... -> View.measure -> View.onMeasure
注:DecorView 其实就是 FrameLayout
layout过程
ViewRootImpl
performLayout(WindowManager.LayoutParams lp, int desiredWindowWidth, int desiredWindowHeight)
在上面分析过,layout 过程是从 ViewRootImpl
中的 performLayout(WindowManager.LayoutParams lp, int desiredWindowWidth, int desiredWindowHeight)
开始的。
private void performLayout(WindowManager.LayoutParams lp, int desiredWindowWidth,
int desiredWindowHeight) {
mLayoutRequested = false;
mScrollMayChange = true;
mInLayout = true;
final View host = mView;
if (DEBUG_ORIENTATION || DEBUG_LAYOUT) {
Log.v(mTag, "Laying out " + host + " to (" +
host.getMeasuredWidth() + ", " + host.getMeasuredHeight() + ")");
}
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "layout");
try {
// host 就是 DecorView,调用了 layout 方法开始布局
host.layout(0, 0, host.getMeasuredWidth(), host.getMeasuredHeight());
mInLayout = false;
// mLayoutRequesters 为需要重新请求布局的 view 集合数
int numViewsRequestingLayout = mLayoutRequesters.size();
// 下面的代码主要用于若有请求重新布局的 view ,那么再进行重新布局
if (numViewsRequestingLayout > 0) {
// requestLayout() was called during layout.
// If no layout-request flags are set on the requesting views, there is no problem.
// If some requests are still pending, then we need to clear those flags and do
// a full request/measure/layout pass to handle this situation.
ArrayList<View> validLayoutRequesters = getValidLayoutRequesters(mLayoutRequesters,
false);
if (validLayoutRequesters != null) {
// Set this flag to indicate that any further requests are happening during
// the second pass, which may result in posting those requests to the next
// frame instead
mHandlingLayoutInLayoutRequest = true;
// view 请求布局,进行重新测量和布局
int numValidRequests = validLayoutRequesters.size();
for (int i = 0; i < numValidRequests; ++i) {
final View view = validLayoutRequesters.get(i);
Log.w("View", "requestLayout() improperly called by " + view +
" during layout: running second layout pass");
view.requestLayout();
}
// 对整个View树进行重新测量
measureHierarchy(host, lp, mView.getContext().getResources(),
desiredWindowWidth, desiredWindowHeight);
mInLayout = true;
// 进行第二次布局
host.layout(0, 0, host.getMeasuredWidth(), host.getMeasuredHeight());
mHandlingLayoutInLayoutRequest = false;
// Check the valid requests again, this time without checking/clearing the
// layout flags, since requests happening during the second pass get noop'd
validLayoutRequesters = getValidLayoutRequesters(mLayoutRequesters, true);
if (validLayoutRequesters != null) {
final ArrayList<View> finalRequesters = validLayoutRequesters;
// Post second-pass requests to the next frame
getRunQueue().post(new Runnable() {
@Override
public void run() {
int numValidRequests = finalRequesters.size();
for (int i = 0; i < numValidRequests; ++i) {
final View view = finalRequesters.get(i);
Log.w("View", "requestLayout() improperly called by " + view +
" during second layout pass: posting in next frame");
view.requestLayout();
}
}
});
}
}
}
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
mInLayout = false;
}
基本可知,performLayout
是通过调用 DecorView 的 layout
方法来向下传递布局的。所以我们应该继续追踪 FrameLayout
的 layout
方法,其实就是 ViewGroup
的 layout
方法。
ViewGroup
layout(int l, int t, int r, int b)
FrameLayout
的 layout
是父类 ViewGroup
实现的,添加了 final 修饰符,无法被重写:
@Override
public final void layout(int l, int t, int r, int b) {
if (!mSuppressLayout && (mTransition == null || !mTransition.isChangingLayout())) {
if (mTransition != null) {
mTransition.layoutChange(this);
}
// 调用 view 的 layout 方法
super.layout(l, t, r, b);
} else {
// record the fact that we noop'd it; request layout when transition finishes
mLayoutCalledWhileSuppressed = true;
}
}
在 ViewGroup
的 layout
方法中又调用了父类的方法 super.layout(l, t, r, b)
。所以我们又要到 View
类中去看。
View
layout(int l, int t, int r, int b)
@SuppressWarnings({"unchecked"})
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
}
// 当前布局的四个顶点
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
// 计算四个顶点的值,判断布局位置是否改变
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
// 如果视图的大小和位置发生变化,会调用onLayout()
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
// 空方法
onLayout(changed, l, t, r, b);
if (shouldDrawRoundScrollbar()) {
if(mRoundScrollbarRenderer == null) {
mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
}
} else {
mRoundScrollbarRenderer = null;
}
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
// 调用布局位置改变监听器
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
}
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
上面的代码中做了这几件事:
- 设置当前布局中的四个顶点;
- 调用
setFrame
来设置新的顶点位置; - 调用
onLayout
方法; - 回调布局位置改变监听器;
setOpticalFrame(int left, int top, int right, int bottom)
我们先来看 setOpticalFrame
方法:
private boolean setOpticalFrame(int left, int top, int right, int bottom) {
Insets parentInsets = mParent instanceof View ?
((View) mParent).getOpticalInsets() : Insets.NONE;
Insets childInsets = getOpticalInsets();
// 调用 setFrame 方法
return setFrame(
left + parentInsets.left - childInsets.left,
top + parentInsets.top - childInsets.top,
right + parentInsets.left + childInsets.right,
bottom + parentInsets.top + childInsets.bottom);
}
其实在 setOpticalFrame
的内部也是调用 setFrame
方法的。
setFrame(int left, int top, int right, int bottom)
protected boolean setFrame(int left, int top, int right, int bottom) {
boolean changed = false;
if (DBG) {
Log.d("View", this + " View.setFrame(" + left + "," + top + ","
+ right + "," + bottom + ")");
}
// 如果新值和旧值不相等,那就是布局位置改变了
if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {
changed = true;
// Remember our drawn bit
int drawn = mPrivateFlags & PFLAG_DRAWN;
// 计算新的宽高和旧的宽高
int oldWidth = mRight - mLeft;
int oldHeight = mBottom - mTop;
int newWidth = right - left;
int newHeight = bottom - top;
// 判断大小是否改变
boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);
// Invalidate our old position
invalidate(sizeChanged);
// 设置 view 的上下左右,赋予最新的值
mLeft = left;
mTop = top;
mRight = right;
mBottom = bottom;
mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom);
mPrivateFlags |= PFLAG_HAS_BOUNDS;
// 回调大小改变的方法
if (sizeChanged) {
sizeChange(newWidth, newHeight, oldWidth, oldHeight);
}
if ((mViewFlags & VISIBILITY_MASK) == VISIBLE || mGhostView != null) {
// If we are visible, force the DRAWN bit to on so that
// this invalidate will go through (at least to our parent).
// This is because someone may have invalidated this view
// before this call to setFrame came in, thereby clearing
// the DRAWN bit.
mPrivateFlags |= PFLAG_DRAWN;
invalidate(sizeChanged);
// parent display list may need to be recreated based on a change in the bounds
// of any child
invalidateParentCaches();
}
// Reset drawn bit to original value (invalidate turns it off)
mPrivateFlags |= drawn;
mBackgroundSizeChanged = true;
if (mForegroundInfo != null) {
mForegroundInfo.mBoundsChanged = true;
}
// Android无障碍辅助功能通知
notifySubtreeAccessibilityStateChangedIfNeeded();
}
return changed;
}
先回根据新旧的宽高进行比较,来确定是不是大小被改变了。如果是,会回调 sizeChange(newWidth, newHeight, oldWidth, oldHeight)
方法,这个方法是不是很眼熟呢?
之后还会把这消息通知给 AccessibilityService
无障碍服务。
最后返回布局是否改变的 boolean 值。
FrameLayout
onLayout(boolean changed, int left, int top, int right, int bottom)
接着,根据布局改变值 changed
会调用 onLayout
方法。
onLayout
方法在 View/ViewGroup 都是空的,是需要子类来实现的。所以我们还是要看 FrameLayout
中的 onLayout
:
@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
layoutChildren(left, top, right, bottom, false /* no force left gravity */);
}
在 onLayout
中调用了 layoutChildren
方法。
layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity)
void layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity) {
final int count = getChildCount();
final int parentLeft = getPaddingLeftWithForeground();
final int parentRight = right - left - getPaddingRightWithForeground();
final int parentTop = getPaddingTopWithForeground();
final int parentBottom = bottom - top - getPaddingBottomWithForeground();
// 遍历子 view
for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
if (child.getVisibility() != GONE) {
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
// 子 view 的宽高
final int width = child.getMeasuredWidth();
final int height = child.getMeasuredHeight();
int childLeft;
int childTop;
// 得到子 view 的 gravity
int gravity = lp.gravity;
if (gravity == -1) {
gravity = DEFAULT_CHILD_GRAVITY;
}
final int layoutDirection = getLayoutDirection();
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK;
// 根据不同的 gravity 来计算 childLeft
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
case Gravity.CENTER_HORIZONTAL:
childLeft = parentLeft + (parentRight - parentLeft - width) / 2 +
lp.leftMargin - lp.rightMargin;
break;
case Gravity.RIGHT:
if (!forceLeftGravity) {
childLeft = parentRight - width - lp.rightMargin;
break;
}
case Gravity.LEFT:
default:
childLeft = parentLeft + lp.leftMargin;
}
// 根据不同的 gravity 来计算 childTop
switch (verticalGravity) {
case Gravity.TOP:
childTop = parentTop + lp.topMargin;
break;
case Gravity.CENTER_VERTICAL:
childTop = parentTop + (parentBottom - parentTop - height) / 2 +
lp.topMargin - lp.bottomMargin;
break;
case Gravity.BOTTOM:
childTop = parentBottom - height - lp.bottomMargin;
break;
default:
childTop = parentTop + lp.topMargin;
}
// 调用子 view 的 layout 方法
child.layout(childLeft, childTop, childLeft + width, childTop + height);
}
}
}
简单来说,在 layoutChildren
中,遍历所有可见的子 View ,然后得到它们的宽高。
再根据不同的 gravity 来计算 childLeft 和 childTop ,最后调用 child.layout 来向子 View 传递下去。
小结
我们把 layout 过程的代码流程理一下:
ViewRootImpl.performTraversals -> ViewRootImpl.performLayout -> DecorView(ViewGroup).layout -> View.layout -> DecorView(FrameLayout).onLayout -> DecorView(FrameLayout).layoutChildren -> ViewGroup.layout -> View.layout -> ViewGroup.onLayout -> ... -> View.layout -> View.onLayout
注:
- ViewGroup.onLayout 是抽象方法,根据不同的 ViewGroup 都有不同的实现方式。但是相同的是,都会遍历调用 child.layout 方法;
- View.onLayout 是空方法;
draw过程
最后一个,draw 过程。 draw 过程应该来说是比较简单的。
ViewRootImpl
performDraw()
首先起点是 performDraw()
方法。
private void performDraw() {
if (mAttachInfo.mDisplayState == Display.STATE_OFF && !mReportNextDraw) {
return;
}
final boolean fullRedrawNeeded = mFullRedrawNeeded;
mFullRedrawNeeded = false;
mIsDrawing = true;
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "draw");
try {
// 调用 draw 方法,fullRedrawNeeded 为是否重新绘制全部视图
draw(fullRedrawNeeded);
} finally {
mIsDrawing = false;
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
...
}
如果是第一次绘制视图,那么显然应该绘制所有的视图,fullRedrawNeeded
参数就为 true ;反之如果由于某些原因,导致了视图重绘,那么就没有必要绘制所有视图,即为 false 。
draw(boolean fullRedrawNeeded)
performDraw()
内部又调用了私有方法 draw(boolean fullRedrawNeeded)
:
private void draw(boolean fullRedrawNeeded) {
...
// dirty 表示需要绘制的区域
final Rect dirty = mDirty;
if (mSurfaceHolder != null) {
// The app owns the surface, we won't draw.
dirty.setEmpty();
if (animating && mScroller != null) {
mScroller.abortAnimation();
}
return;
}
// 如果需要全部绘制,那么 dirty 就是整个屏幕了
if (fullRedrawNeeded) {
mAttachInfo.mIgnoreDirtyState = true;
dirty.set(0, 0, (int) (mWidth * appScale + 0.5f), (int) (mHeight * appScale + 0.5f));
}
...
// 调用 drawSoftware ,把绘制区域 dirty 传入
if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset, scalingRequired, dirty)) {
return;
}
...
}
在确定了绘制的区域 dirty
之后,调用了 drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff, boolean scalingRequired, Rect dirty)
。
drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff, boolean scalingRequired, Rect dirty)
private boolean drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff,
boolean scalingRequired, Rect dirty) {
// Draw with software renderer.
final Canvas canvas;
try {
final int left = dirty.left;
final int top = dirty.top;
final int right = dirty.right;
final int bottom = dirty.bottom;
//锁定画布,由 dirty 区域决定
canvas = mSurface.lockCanvas(dirty);
// The dirty rectangle can be modified by Surface.lockCanvas()
//noinspection ConstantConditions
if (left != dirty.left || top != dirty.top || right != dirty.right
|| bottom != dirty.bottom) {
attachInfo.mIgnoreDirtyState = true;
}
// TODO: Do this in native
canvas.setDensity(mDensity);
} catch (Surface.OutOfResourcesException e) {
handleOutOfResourcesException(e);
return false;
} catch (IllegalArgumentException e) {
Log.e(mTag, "Could not lock surface", e);
// Don't assume this is due to out of memory, it could be
// something else, and if it is something else then we could
// kill stuff (or ourself) for no reason.
mLayoutRequested = true; // ask wm for a new surface next time.
return false;
}
try {
if (DEBUG_ORIENTATION || DEBUG_DRAW) {
Log.v(mTag, "Surface " + surface + " drawing to bitmap w="
+ canvas.getWidth() + ", h=" + canvas.getHeight());
//canvas.drawARGB(255, 255, 0, 0);
}
// If this bitmap's format includes an alpha channel, we
// need to clear it before drawing so that the child will
// properly re-composite its drawing on a transparent
// background. This automatically respects the clip/dirty region
// or
// If we are applying an offset, we need to clear the area
// where the offset doesn't appear to avoid having garbage
// left in the blank areas.
if (!canvas.isOpaque() || yoff != 0 || xoff != 0) {
canvas.drawColor(0, PorterDuff.Mode.CLEAR);
}
dirty.setEmpty();
mIsAnimating = false;
mView.mPrivateFlags |= View.PFLAG_DRAWN;
if (DEBUG_DRAW) {
Context cxt = mView.getContext();
Log.i(mTag, "Drawing: package:" + cxt.getPackageName() +
", metrics=" + cxt.getResources().getDisplayMetrics() +
", compatibilityInfo=" + cxt.getResources().getCompatibilityInfo());
}
try {
canvas.translate(-xoff, -yoff);
if (mTranslator != null) {
mTranslator.translateCanvas(canvas);
}
canvas.setScreenDensity(scalingRequired ? mNoncompatDensity : 0);
attachInfo.mSetIgnoreDirtyState = false;
// 调用 View 的 draw 方法
mView.draw(canvas);
drawAccessibilityFocusedDrawableIfNeeded(canvas);
} finally {
if (!attachInfo.mSetIgnoreDirtyState) {
// Only clear the flag if it was not set during the mView.draw() call
attachInfo.mIgnoreDirtyState = false;
}
}
} finally {
try {
surface.unlockCanvasAndPost(canvas);
} catch (IllegalArgumentException e) {
Log.e(mTag, "Could not unlock surface", e);
mLayoutRequested = true; // ask wm for a new surface next time.
//noinspection ReturnInsideFinallyBlock
return false;
}
if (LOCAL_LOGV) {
Log.v(mTag, "Surface " + surface + " unlockCanvasAndPost");
}
}
return true;
}
View
draw(Canvas canvas)
之后调用了 View
的 draw(Canvas canvas)
:
public void draw(Canvas canvas) {
final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;
/*
* Draw traversal performs several drawing steps which must be executed
* in the appropriate order:
*
* 1. Draw the background
* 2. If necessary, save the canvas' layers to prepare for fading
* 3. Draw view's content
* 4. Draw children
* 5. If necessary, draw the fading edges and restore layers
* 6. Draw decorations (scrollbars for instance)
*/
// 第一步,画背景
int saveCount;
if (!dirtyOpaque) {
drawBackground(canvas);
}
// skip step 2 & 5 if possible (common case)
// 可能的话,跳过第二步和第五步
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// 第三步,画自己的内容
if (!dirtyOpaque) onDraw(canvas);
// 第四步,画自己子 view 的内容
dispatchDraw(canvas);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// 第六步,绘制View的装饰,比如 scrollbar 等 (foreground, scrollbars)
onDrawForeground(canvas);
// 做完了,直接返回 we're done...
return;
}
/*
* Here we do the full fledged routine...
* (this is an uncommon case where speed matters less,
* this is why we repeat some of the tests that have been
* done above)
*/
boolean drawTop = false;
boolean drawBottom = false;
boolean drawLeft = false;
boolean drawRight = false;
float topFadeStrength = 0.0f;
float bottomFadeStrength = 0.0f;
float leftFadeStrength = 0.0f;
float rightFadeStrength = 0.0f;
// 第二步,保存 canvas 图层
int paddingLeft = mPaddingLeft;
final boolean offsetRequired = isPaddingOffsetRequired();
if (offsetRequired) {
paddingLeft += getLeftPaddingOffset();
}
int left = mScrollX + paddingLeft;
int right = left + mRight - mLeft - mPaddingRight - paddingLeft;
int top = mScrollY + getFadeTop(offsetRequired);
int bottom = top + getFadeHeight(offsetRequired);
if (offsetRequired) {
right += getRightPaddingOffset();
bottom += getBottomPaddingOffset();
}
final ScrollabilityCache scrollabilityCache = mScrollCache;
final float fadeHeight = scrollabilityCache.fadingEdgeLength;
int length = (int) fadeHeight;
// clip the fade length if top and bottom fades overlap
// overlapping fades produce odd-looking artifacts
if (verticalEdges && (top + length > bottom - length)) {
length = (bottom - top) / 2;
}
// also clip horizontal fades if necessary
if (horizontalEdges && (left + length > right - length)) {
length = (right - left) / 2;
}
if (verticalEdges) {
topFadeStrength = Math.max(0.0f, Math.min(1.0f, getTopFadingEdgeStrength()));
drawTop = topFadeStrength * fadeHeight > 1.0f;
bottomFadeStrength = Math.max(0.0f, Math.min(1.0f, getBottomFadingEdgeStrength()));
drawBottom = bottomFadeStrength * fadeHeight > 1.0f;
}
if (horizontalEdges) {
leftFadeStrength = Math.max(0.0f, Math.min(1.0f, getLeftFadingEdgeStrength()));
drawLeft = leftFadeStrength * fadeHeight > 1.0f;
rightFadeStrength = Math.max(0.0f, Math.min(1.0f, getRightFadingEdgeStrength()));
drawRight = rightFadeStrength * fadeHeight > 1.0f;
}
saveCount = canvas.getSaveCount();
int solidColor = getSolidColor();
if (solidColor == 0) {
final int flags = Canvas.HAS_ALPHA_LAYER_SAVE_FLAG;
if (drawTop) {
canvas.saveLayer(left, top, right, top + length, null, flags);
}
if (drawBottom) {
canvas.saveLayer(left, bottom - length, right, bottom, null, flags);
}
if (drawLeft) {
canvas.saveLayer(left, top, left + length, bottom, null, flags);
}
if (drawRight) {
canvas.saveLayer(right - length, top, right, bottom, null, flags);
}
} else {
scrollabilityCache.setFadeColor(solidColor);
}
// Step 3, draw the content
if (!dirtyOpaque) onDraw(canvas);
// Step 4, draw the children
dispatchDraw(canvas);
// 第五步,绘制边缘效果和恢复图层
final Paint p = scrollabilityCache.paint;
final Matrix matrix = scrollabilityCache.matrix;
final Shader fade = scrollabilityCache.shader;
if (drawTop) {
matrix.setScale(1, fadeHeight * topFadeStrength);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
p.setShader(fade);
canvas.drawRect(left, top, right, top + length, p);
}
if (drawBottom) {
matrix.setScale(1, fadeHeight * bottomFadeStrength);
matrix.postRotate(180);
matrix.postTranslate(left, bottom);
fade.setLocalMatrix(matrix);
p.setShader(fade);
canvas.drawRect(left, bottom - length, right, bottom, p);
}
if (drawLeft) {
matrix.setScale(1, fadeHeight * leftFadeStrength);
matrix.postRotate(-90);
matrix.postTranslate(left, top);
fade.setLocalMatrix(matrix);
p.setShader(fade);
canvas.drawRect(left, top, left + length, bottom, p);
}
if (drawRight) {
matrix.setScale(1, fadeHeight * rightFadeStrength);
matrix.postRotate(90);
matrix.postTranslate(right, top);
fade.setLocalMatrix(matrix);
p.setShader(fade);
canvas.drawRect(right - length, top, right, bottom, p);
}
canvas.restoreToCount(saveCount);
// Overlay is part of the content and draws beneath Foreground
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// Step 6, draw decorations (foreground, scrollbars)
onDrawForeground(canvas);
}
draw 过程大概有下面几步:
- 绘制背景:
background.draw(canvas)
; - 保存当前的图层信息(一般来说跳过);
- 绘制自己:
onDraw(canvas)
; - 绘制children:
dispatchDraw(canvas)
; - 绘制边缘效果,恢复图层(一般来说跳过);
- 绘制前景装饰:
onDrawForeground(canvas)
。
在这里,我们继续看一下 dispatchDraw(Canvas canvas)
方法,这个方法是向子 View 分发绘制流程的。
因为 View 没有子 View ,所以 dispatchDraw(Canvas canvas)
方法是空的,所以我们要到 ViewGroup 中去看看。
ViewGroup
dispatchDraw(Canvas canvas)
@Override
protected void dispatchDraw(Canvas canvas) {
boolean usingRenderNodeProperties = canvas.isRecordingFor(mRenderNode);
final int childrenCount = mChildrenCount;
final View[] children = mChildren;
int flags = mGroupFlags;
if ((flags & FLAG_RUN_ANIMATION) != 0 && canAnimate()) {
final boolean buildCache = !isHardwareAccelerated();
// 遍历子 view
for (int i = 0; i < childrenCount; i++) {
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE) {
final LayoutParams params = child.getLayoutParams();
attachLayoutAnimationParameters(child, params, i, childrenCount);
bindLayoutAnimation(child);
}
}
final LayoutAnimationController controller = mLayoutAnimationController;
if (controller.willOverlap()) {
mGroupFlags |= FLAG_OPTIMIZE_INVALIDATE;
}
controller.start();
mGroupFlags &= ~FLAG_RUN_ANIMATION;
mGroupFlags &= ~FLAG_ANIMATION_DONE;
if (mAnimationListener != null) {
mAnimationListener.onAnimationStart(controller.getAnimation());
}
}
int clipSaveCount = 0;
final boolean clipToPadding = (flags & CLIP_TO_PADDING_MASK) == CLIP_TO_PADDING_MASK;
if (clipToPadding) {
clipSaveCount = canvas.save();
canvas.clipRect(mScrollX + mPaddingLeft, mScrollY + mPaddingTop,
mScrollX + mRight - mLeft - mPaddingRight,
mScrollY + mBottom - mTop - mPaddingBottom);
}
// We will draw our child's animation, let's reset the flag
mPrivateFlags &= ~PFLAG_DRAW_ANIMATION;
mGroupFlags &= ~FLAG_INVALIDATE_REQUIRED;
boolean more = false;
final long drawingTime = getDrawingTime();
if (usingRenderNodeProperties) canvas.insertReorderBarrier();
final int transientCount = mTransientIndices == null ? 0 : mTransientIndices.size();
int transientIndex = transientCount != 0 ? 0 : -1;
// Only use the preordered list if not HW accelerated, since the HW pipeline will do the
// draw reordering internally
final ArrayList<View> preorderedList = usingRenderNodeProperties
? null : buildOrderedChildList();
final boolean customOrder = preorderedList == null
&& isChildrenDrawingOrderEnabled();
for (int i = 0; i < childrenCount; i++) {
while (transientIndex >= 0 && mTransientIndices.get(transientIndex) == i) {
final View transientChild = mTransientViews.get(transientIndex);
if ((transientChild.mViewFlags & VISIBILITY_MASK) == VISIBLE ||
transientChild.getAnimation() != null) {
more |= drawChild(canvas, transientChild, drawingTime);
}
transientIndex++;
if (transientIndex >= transientCount) {
transientIndex = -1;
}
}
final int childIndex = getAndVerifyPreorderedIndex(childrenCount, i, customOrder);
final View child = getAndVerifyPreorderedView(preorderedList, children, childIndex);
if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
// 调用 drawChild 来绘制子 view
more |= drawChild(canvas, child, drawingTime);
}
}
...
}
在 dispatchDraw(Canvas canvas)
中,遍历子 View ,然后调用 drawChild(Canvas canvas, View child, long drawingTime)
方法来执行子 View 的绘制流程。
drawChild(Canvas canvas, View child, long drawingTime)
protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
return child.draw(canvas, this, drawingTime);
}
发现在 drawChild(Canvas canvas, View child, long drawingTime)
中还是调用了 draw(Canvas canvas, ViewGroup parent, long drawingTime)
方法。但是这个 draw(Canvas canvas, ViewGroup parent, long drawingTime)
和上面的 draw(Canvas canvas)
参数不同,所以不是同一个方法。
View
draw(Canvas canvas, ViewGroup parent, long drawingTime)
boolean draw(Canvas canvas, ViewGroup parent, long drawingTime) {
...
// 如果没有绘制缓存
if (!drawingWithDrawingCache) {
if (drawingWithRenderNode) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
((DisplayListCanvas) canvas).drawRenderNode(renderNode);
} else {
// Fast path for layouts with no backgrounds
// 如果设置了 willNotDraw 为 true ,那么不会绘制自己,直接跳过,优化绘制性能
// View 默认是 false ,ViewGroup 默认是 true ,直接让自己的子 View 进入绘制
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
dispatchDraw(canvas);
} else {
// 调用 draw 方法
draw(canvas);
}
}
} else if (cache != null) {
// 有缓存就用缓存绘制
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
if (layerType == LAYER_TYPE_NONE || mLayerPaint == null) {
// no layer paint, use temporary paint to draw bitmap
Paint cachePaint = parent.mCachePaint;
if (cachePaint == null) {
cachePaint = new Paint();
cachePaint.setDither(false);
parent.mCachePaint = cachePaint;
}
cachePaint.setAlpha((int) (alpha * 255));
canvas.drawBitmap(cache, 0.0f, 0.0f, cachePaint);
} else {
// use layer paint to draw the bitmap, merging the two alphas, but also restore
int layerPaintAlpha = mLayerPaint.getAlpha();
if (alpha < 1) {
mLayerPaint.setAlpha((int) (alpha * layerPaintAlpha));
}
canvas.drawBitmap(cache, 0.0f, 0.0f, mLayerPaint);
if (alpha < 1) {
mLayerPaint.setAlpha(layerPaintAlpha);
}
}
}
...
}
在 draw(Canvas canvas, ViewGroup parent, long drawingTime)
中,若没有缓存的话:
- 若
willNotDraw
设置为 false 的话,那么调用draw(canvas)
; - 否则直接调用
dispatchDraw(canvas)
分发给子 View ,一般适用于 ViewGroup ;
willNotDraw
代表一个 View 不需要绘制任何内容的话,那么系统会跳过,进行性能上的优化。
到这里,就调用了子 View 的 draw(Canvas canvas)
方法,从而实现了绘制过程的向下传递。
小结
我们把 draw 过程的代码流程理一下:
ViewRootImpl.performTraversals -> ViewRootImpl.performDraw -> ViewRootImpl.draw(boolean fullRedrawNeeded) -> ViewRootImpl.drawSoftware -> DecorView(View).draw(Canvas canvas) -> DecorView(ViewGroup).dispatchDraw -> DecorView(ViewGroup).drawChild -> ViewGroup(View).draw(Canvas canvas, ViewGroup parent, long drawingTime) -> ViewGroup.dispatchDraw -> ViewGroup.drawChild -> ViewGroup.draw(Canvas canvas, ViewGroup parent, long drawingTime) -> ... -> View.draw(Canvas canvas) -> View.onDraw -> View.dispatchDraw
注:
- 其中
View.dispatchDraw
为空实现; - DecorView 在
draw(Canvas canvas)
的方法内不会调用onDraw
方法; - ViewGroup 不会调用
draw(Canvas canvas)
方法;
最后
总体来说,三个流程中主要还是 measure 过程较复杂。其他的两个流程整体上来说还是比较清晰简单的。
可以说 View 工作的三大流程是每一位 Android 开发者都必须掌握的。之前虽然也了解,但是没有写成博客好好捋一下,现在终于完成了,篇幅真的太长了。 _
另外,除了需要了解这三大流程外,还需要知道 requestLayout
和 invalidate
等方法的原理。这些东西等有空了我理一理再写出来给大家吧。
今天就这样了,如果有不懂的地方可以在下面留言。
网友评论