排序算法学习笔记

作者: 苹果tree | 来源:发表于2018-12-27 10:24 被阅读39次

    排序算法分析维度


    • 执行效率
      最好情况,最坏情况,平均情况时间复杂度
      时间复杂度系数,常数,低阶
      比较次数和交换(或移动)次数

    • 内存消耗
      是否是原地排序算法(空间复杂度O(1))

    • 稳定性
      相等元素之间原有的先后顺序是否改变

    冒泡排序(Bubble Sort)


    思想: 每次比较相邻两个数据,不满足大小关系要求则交换。一次冒泡至少会让一个元素移动到它应该在的位置。
    是否原地排序: 是,只涉及相邻数据交换,只需常量级临时空间,空间复杂度O(1)
    是否稳定: 是,相邻两元素大小相等时不做交换
    时间复杂度: 最好情况冒泡一次,O(n)。最坏情况冒泡n次,O(n2)。元素交换次数是原始数据逆序度

    有序元素对:a[i] <= a[j],如果i < j
    逆序元素对:a[i] > a[j],如果i < j
    完全有序的数组的有序度称为满有序度(n* (n - 1)/2)
    逆序度 = 满有序度 - 有序度
    分析平均情况下时间复杂度可结合"有序度"“逆序度”概念,最坏情况需进行n* (n - 1)/2次交换,即平均情况大致需进行n* (n - 1)/4次交换,时间复杂度O(n2)

    插入排序(Insertion Sort)


    思想: 分为已排序区间和未排序区间,从尾到头遍历已排序区间的数据,找到数据应该插入的位置将其插入
    是否原地排序: 是,不需要额外存储空间,空间复杂度O(1)
    是否稳定:
    时间复杂度: 最好情况O(n),最坏情况O(n2),平均情况(即数组插入数据的平均时间复杂度)O(n2)。元素移动次数是原始数据逆序度

    选择排序(Selection Sort)


    思想: 分为已排序区间和未排序区间,每次从未排序区间找到最小元素,同未排序区间第一个元素交换,将其放到已排序区间末尾。
    是否原地排序: 是,空间复杂度O(1)
    是否稳定: 否,因元素交换破坏稳定性
    时间复杂度: 最好情况,最坏情况和平均情况时间复杂度都为O(n2)

    虽然冒泡和插排的时间复杂度都是O(n2),都是原地排序,但从代码实现上看,冒泡需3个赋值操作,插入只需1个,且插排的算法思路有很大优化空间

    归并排序(Merge Sort)


    思想: 要排序一个数组,先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排序好的两部分合并在一起。运用分治思想(一般都用递归来实现)。
    实现思路: 递推公式 merge_sort(p...r) = merge(merge_sort(p...q), merge_sort(q+1...r));终止条件 q >= r 不用再继续分解(q=(p+r)/2)
    代码示例:

    void merge_sort_recursive(int[] arr, int[] reg, int start, int end) {
            if (start >= end)
                return;
            int len = end - start, mid = (len >> 1) + start;
            int start1 = start, end1 = mid;
            int start2 = mid + 1, end2 = end;
            //递归到子序列只有一个数的时候,开始逐个返回
            merge_sort_recursive(arr, reg, start1, end1);
            merge_sort_recursive(arr, reg, start2, end2);
            //-------合并操作,必须在递归之后(子序列有序的基础上)----
            int k = start;
            while (start1 <= end1 && start2 <= end2)
                reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
            while (start1 <= end1)
                reg[k++] = arr[start1++];
            while (start2 <= end2)
                reg[k++] = arr[start2++];
            //借用reg数组做合并,然后把数据存回arr中
            for (k = start; k <= end; k++)
                arr[k] = reg[k];
    }
    

    哨兵简化技巧 在划分后的两个数组最后都加上INT_MAX,减少两次越界判断
    因为不可能大于INT_MAX,所以只需比较值即可判断是否越界,不需再用下标判断

    是否原地排序: 否,空间复杂度O(n)(任意时刻,CPU只会有一个函数在执行,也就只会有一个临时内存空间在使用,所以最大不会超过n个数据的大小)
    是否稳定: 是,合并时按下标优先。
    时间复杂度: O(nlogn)(T(1) = C,n=1; T(n) = 2*T(n/2) + n,n>1;推导而来)

    快速排序(Quick Sort)


    思想: 排序p到r的一组数据,择一分区点pivot,将小于pivot的放在左边,大于pivot的放在右边,依次递归。核心思想就是分治分区
    实现思路: 递推公式 quick_sort(p...r) = quick_sort(p...q-1) + quick_sort(q+1, r);终止条件 p >= r
    代码示例:

    public static void quickSort(int[]arr,int low,int high){
            if (low < high) {
                int middle = getMiddle(arr, low, high);
                quickSort(arr, low, middle - 1);
                quickSort(arr, middle + 1, high);
            }
    }
    public static int getMiddle(int[] list, int low, int high) {
            int tmp = list[low];
            while (low < high) {
                while (low < high && list[high] >= tmp) {
                    high--;
                }
                list[low] = list[high];
                while (low < high && list[low] <= tmp) {
                    low++;
                }
                list[high] = list[low];
            }
            list[low] = tmp;
            return low;
    }
    

    利用游标原地分区,节省空间,开一个空间存储临时变量(pivot),左右两头的游标不断缩紧,下标对应的数据跟pivot值对比并交换到正确位置。

    是否稳定: 否,涉及交换,顺序无法保证
    是否原地排序: 是,关键看分区函数怎么写,利用游标原地分区空间复杂度为O(1)
    时间复杂度: O(nlogn)(T(1) = C,n=1; T(n) = 2*T(n/2) + n,n>1;推导而来),极端情况会退化为O(n2)

    线性排序


    桶排序(Bucket Sort)


    思想: 将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序,最后把每个桶的数据依次取出,组成有序序列。
    代码示例:

    public class BucketSort {
    /**
    * 对arr进行桶排序,排序结果仍放在arr中
    */
    public static void bucketSort(double arr[]){
            //--------------分桶-----------------
            int n = arr.length;
            //存放桶的链表
            ArrayList bucketList[] = new ArrayList [n];
            //每个桶是一个list,存放此桶的元素
            for(int i =0;i<n;i++){
                    //下取等
                    int temp = (int) Math.floor(n*arr[i]);
                    //若不存在该桶,就新建一个桶并加入到桶链表中
                    if(null==bucketList[temp])
                            bucketList[temp] = new ArrayList();
                    //把当前元素加入到对应桶中
                    bucketList[temp].add(arr[i]);
            }
            //------------桶内排序------------
            //对每个桶中的数进行插入排序
            for(int i = 0;i<n;i++){
                    if(null!=bucketList[i])
                    insert(bucketList[i]);
            }
            //----------------合并桶内数据-------------
            //把各个桶的排序结果合并
            int count = 0;
            for(int i = 0;i<n;i++){
                    if(null!=bucketList[i]){
                            Iterator iter = bucketList[i].iterator();
                            while(iter.hasNext()){
                                    Double d = (Double)iter.next();
                                    arr[count] = d;
                                    count++;
                            }
                    }
            }
    }
    /**
    * 用插入排序对每个桶进行排序(用快排时间复杂度降低)
    * 从小到大排序
    */
    public static void insert(ArrayList list){
            if(list.size()>1){
                    for(int i =1;i<list.size();i++){
                            if((Double)list.get(i)<(Double)list.get(i-1)){
                                    double temp = (Double) list.get(i);
                                    int j = i-1;
                                    for(;j>=0&&((Double)list.get(j)>(Double)list.get(j+1));j--)
                                            list.set(j+1, list.get(j)); //后移
                                    list.set(j+1, temp);
                             }
                    }
            }
    }
    
    }
    

    时间复杂度: O(n),将n个数据划分到m个桶里,每个桶有k=n/m个元素,桶内用快排则每个桶时间复杂度为O(klogk),m个桶为O(mklogk),k=n/m代入,整个桶时间复杂度为O(nlog(n/m)),当m接近n时接近O(n)。
    适用条件: 首先,要排序的数据需要很容易就能划分成m个桶;其次,数据在各个桶之间的分布是比较均匀的。分布不均的极端情况,时间复杂对退化为O(nlogn)(数据都划分到一个桶里)
    适用场景:外部排序,大量数据,存储在外部磁盘中,分桶后每个桶的数据一次放入内存中快排排序,若一次分桶后数据量依然较大的文件可继续划分,直到所有文件都能读入内存。

    计数排序(Counting Sort)


    思想: n个数据所处范围的最大值为k,分为k个桶,每个桶内数值相同,省掉桶内排序的时间,是桶排序的一种特殊情况。
    实现思路: 拿考生查分举例(原始数列如A[8]={2,5,3,0,2,3,0,3}),一分一个桶,并对数组顺序求和(即数组C[k]里存储小于等于分数k的考生个数)得到的数列如 C[6]={2,2,4,7,7,8};从后向前一次扫描数组A,扫描到3时从数组C中找到下标为3的计数7,说明这个3是排序后的有序数组(R[])中第7位,当3放入数组R后相应C[3]减1,变成6。
    代码示例:

    // 计数排序,a 是数组,n 是数组大小。假设数组中存储的都是非负整数。
    public void countingSort(int[]a, int n) {
            if (n <= 1) return;
            // 查找数组中数据的范围
            int max = a[0];
            for (int i = 1; i < n; ++i) {
                    if (max < a[i]) {
                            max = a[i];
                    } 
            }
            int[] c = new int[max + 1];// 申请一个计数数组 c,下标大小 [0,max]
            for (int i = 0; i <= max; ++i){
                    c[i] = 0; 
            }
            // 计算每个元素的个数,放入 c 中
            for (int i = 0; i < n; ++i) {
                    c[a[i]]++; 
            }
            // 依次累加
           for (int i = 1; i <= max; ++i){
                  c[i] = c[i-1] + c[i];
           }
           // 临时数组 r,存储排序之后的结果
           int[] r = new int[n];
           // 计算排序的关键步骤,有点难理解
           for (int i = n - 1; i >= 0; --i) { 
                  int index = c[a[i]]-1;
                  r[index] = a[i];
                  c[a[i]]--; 
           }
           // 将结果拷贝给 a 数组
           for (int i = 0; i < n; ++i) {
                  a[i] = r[i];
           }
     }
    

    适用场景: 数据范围不大(k比n小),只能给非负整数排序或转化为非负整数。

    基数排序(Radix Sort)


    思想: 将整数按位数切割成不同的数字,然后按每个位数分别比较。
    时间复杂度: O(n),数据有k位,每次排序O(n),k次O(kn)*,k不大时近似O(n)
    是否原地排序: 是。
    适用场景: 需要可以分割出独立的“位”来比较,且位之间有递进关系(高低位),且每一位数据范围不能太大要可以用线性排序算法完成。

    数据不等长的情况可补位,如单词排序可补“0”,字母的ASCII值都大于“0”,不影响原顺序。


    参考:《数据结构与算法之美》王争

    相关文章

      网友评论

        本文标题:排序算法学习笔记

        本文链接:https://www.haomeiwen.com/subject/owaflqtx.html