美文网首页单细胞转录组 生物信息学分析生物信息学与算法
单细胞测序分析: R harmony包 整合多个单细胞数据

单细胞测序分析: R harmony包 整合多个单细胞数据

作者: JeremyL | 来源:发表于2020-08-19 17:38 被阅读0次
    Overview of Harmony algorithm

    Fast, sensitive and accurate integration of single-cell data with Harmony

    #系统需求

    • Linux, OS X, 和Windows系统均可以;
    • R 版本需要3.4以上
    • Python 用户参考harmonypy

    #安装

    library(devtools)
    install_github("immunogenomics/harmony")
    

    #例子

    ##PCA matrix

    Harmony 可以迭代矫正PCA 降维数据;使用PCA数据,需要设置:do_pca=FALSE

    data(cell_lines_small)
    pca_matrix <- cell_lines_small$scaled_pcs
    meta_data <- cell_lines_small$meta_data
    harmony_embeddings <- HarmonyMatrix(pca_matrix, meta_data, 'dataset', 
                                        do_pca=FALSE)
    
    ##\## Output is a matrix of corrected PC embeddings
    dim(harmony_embeddings)
    harmony_embeddings[seq_len(5), seq_len(5)]
    
    ##\## Finally, we can return an object with all the underlying data structures
    harmony_object <- HarmonyMatrix(pca_matrix, meta_data, 'dataset', 
                                    do_pca=FALSE, return_object=TRUE)
    dim(harmony_object$Y) ## cluster centroids
    dim(harmony_object$R) ## soft cluster assignment
    dim(harmony_object$Z_corr) ## corrected PCA embeddings
    head(harmony_object$O) ## batch by cluster co-occurence matrix
    

    ##Normalized gene matrix

    Harmony期望导入的数据是标准化之后的数据。Harmony 会缩放数据,降维(PCA),最后数据整合。

    library(harmony)
    my_harmony_embeddings <- HarmonyMatrix(normalized_counts, meta_data, "dataset")
    

    ##Seurat

    在Seurat分析流程中使用Harmony:Seurat V2 Seurat V3;使用RunHarmony()代替PCA,之后runUMAP().

    seuratObj <- RunHarmony(seuratObj, "dataset")
    seuratObj <- RunUMAP(seuratObj, reduction = "harmony")
    

    ##Harmony with two or more covariates

    Harmony 可以基于多个协变量整合数据;整合时,通过向量指定协变量。

    my_harmony_embeddings <- HarmonyMatrix(
      my_pca_embeddings, meta_data, c("dataset", "donor", "batch_id"),
      do_pca = FALSE
    )
    

    Seurat 流程中:

    seuratObject <- RunHarmony(seuratObject, c("dataset", "donor", "batch_id"))
    

    详细使用方法参考: advanced tutorial

    Fast, sensitive and accurate integration of single-cell data with Harmony 文章代码复现见harmony2019

    #参考:

    Harmony
    Fast, sensitive and accurate integration of single-cell data with Harmony

    相关文章

      网友评论

        本文标题:单细胞测序分析: R harmony包 整合多个单细胞数据

        本文链接:https://www.haomeiwen.com/subject/peddjktx.html