实时推荐系统的3种方式

作者: 54b59ee78c42 | 来源:发表于2015-05-28 13:20 被阅读27665次

    推荐系统介绍

    自从1992年施乐的科学家为了解决信息负载的问题,第一次提出协同过滤算法,个性化推荐已经经过了二十几年的发展。1998年,林登和他的同事申请了“item-to-item”协同过滤技术的专利,经过多年的实践,亚马逊宣称销售的推荐占比可以占到整个销售GMV(Gross Merchandise Volume,即年度成交总额)的30%以上。随后Netflix举办的推荐算法优化竞赛,吸引了数万个团队参与角逐,期间有上百种的算法进行融合尝试,加快了推荐系统的发展,其中SVD(Sigular Value Decomposition,即奇异值分解,一种正交矩阵分解法)和Gavin Potter跨界的引入心理学的方法进行建模,在诸多算法中脱颖而出。其中,矩阵分解的核心是将一个非常稀疏的用户评分矩阵R分解为两个矩阵:User特性的矩阵P和Item特性的矩阵Q,用P和Q相乘的结果R'来拟合原来的评分矩阵R,使得矩阵R'在R的非零元素那些位置上的值尽量接近R中的元素,通过定义R和R'之间的距离,把矩阵分解转化成梯度下降等求解的局部最优解问题。Netflix最新的实时推荐系统如图9-5所示。

    除此之外,实时协同过滤算法本身一直是人们研究的热点,早在2003年,Edward F. Harrington就第一次提出了基于感知器的实时协同过滤算法,但是这种方法需要所有用户的偏好,实用性较差;2010年,杨强等提出了实时进化的协同过滤算法,给予新得分更高的权重来增量更新User和Item的相似度;2011年,UC Berkeley的Jacob Abernethy等人提出了OCF-SGD算法,我们知道传统的矩阵分解把用户评分矩阵R分解成多个矩阵,比如R≈P*Q,该方法提出当新来一个User到Item的得分,把更新R矩阵的问题转换成更新P和Q矩阵,从而达到实时协同过滤;近几年的RecSys大会上,实时协同过滤也是讨论的热点,OCF-SGD算法每次只考虑一个用户,忽略了用户之间的关系,Jialei Wang等人提出了基于多任务学习的实时协同过滤算法,把每一个用户当做一个任务,定义一个表示各个任务间相似性和交互程度的矩阵A,当新来一个User到Item的得分,通过矩阵A来更新其他用户的得分。

    2.基于Spark的方式

    在架构上,第一种是使用Spark把模型计算放在内存中,加快模型计算速度,Hadoop中作业的中间输出结果是放到硬盘的HDFS中,而Spark是直接保存在内存中,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的模型计算,如表9-2所示。

    (来源:http://www.csdn.net/article/2014-05-19/2819831-TDW-Shuffle/2

    3.基于Kiji框架的方式

    第二种是使用Kiji,它是一个用来构建大数据应用和实时推荐系统的开源框架,本质上是对HBase上层的一个封装,用Avro来承载对象化的数据,使得用户能更容易地用HBase管理结构化的数据,使得用户姓名、地址等基础信息和点击、购买等动态信息都能存储到一行,在传统数据库中,往往需要建立多张表,在计算的时候要关联多张表,影响实时性。Kiji与HBase的映射关系如表9-3所示。

    Kiji提供了一个KijiScoring模块,它可以定义数据的过期策略,如综合产品点击次数和上次的点击时间,设置数据的过期策略把数据刷新到KijiScoring服务器中,并且根据自己定义的规则,决定是否需要重新计算得分。如用户有上千万浏览记录,一次的行为不会影响多少总体得分,不需要重新计算,但如果用户仅有几次浏览记录,一次的行为,可能就要重新训练模型。Kiji也提供了一个Kiji模型库,使得改进的模型部署到生产环境时不用停掉应用程序,让开发者可以轻松更新其底层的模型。

    4.基于Storm的方式

    最后一种基于 Storm 的实时推荐系统。在实时推荐上,算法本身不能设计的太复杂,并且很多网站的数据库是TB、PB级别,实时读写大表比较耗时。可以把算法分成离线部分和实时部分,利用Hadoop离线任务尽量把查询数据库比较多的、可以预先计算的模型先训练好,或者把计算的中间数据先计算好,比如,线性分类器的参数、聚类算法的群集位置或者协同过滤中条目的相似性矩阵,然后把少量更新的计算留给Storm实时计算,一般是具体的评分阶段。

    基于Storm的实时推荐系统

    基于本章前面的学习,我们可以设计图9-6所示的实时推荐系统。

    相关文章

      网友评论

      本文标题:实时推荐系统的3种方式

      本文链接:https://www.haomeiwen.com/subject/yrbrqttx.html