美文网首页如切如磋,如琢如磨简友广场我的大学
《线性代数应该这样学》课内验证3-线性映射

《线性代数应该这样学》课内验证3-线性映射

作者: Raow1 | 来源:发表于2021-09-24 00:24 被阅读0次

    CHAPTER 3 Linear Maps

    1. Make sure you verify that each of the functions defined below is indeed a linear map:
      • zero: 0 \in \mathcal{L}(V,W) is defined by 0v=0.
      • identity: I \in \mathcal{L}(V,V) is defined by Iv=v.
      • multiplication by x^2: T \in \mathcal{L}(\mathcal{P}(\mathbb{R}),\mathcal{P}(\mathbb{R})) is defined by (Tp)(x)=x^2p(x) for x \in \mathbb{R}.
      • backwar shift: T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}) is defined by T(x_1,x_2,x_3,\cdots)=(x_2,x_3,\cdots).
      • from \mathbb{F}^{n} to \mathbb{F}^{m} : T \in \mathcal{L}(\mathbb{F}^{n}, \mathbb{F}^{m}) is defined by T(x_1, \cdots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\cdots,A_{m,1}x_1+\cdots+A_{m,n}x_n).

    Proof

    • zero. Additivity: for all u,v \in V, 0(u+v)=0=0u+0v.

      homogeneity: for all \lambda \in \mathbb{F} and all v \in V, 0(\lambda v)=0=\lambda 0= \lambda 0(v).

    • identity: Additivity: for all u,v \in V, I(u+v)=u+v=I(u)+I(v).

      homogeneity: for all \lambda \in \mathbb{F} and all v \in V, I(\lambda v)=\lambda v=\lambda I(v).

    • multiplication by x^2: Additivity: for all u,v \in \mathcal{P}(\mathbb{R}), T(u+v)(x)=x^2(u+v)=x^2u+x^2v=T(u)+T(v)

      homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathcal{P}(\mathbb{R}), T(\lambda v)(x)=\lambda x^2 v=\lambda T(v).

    • backwar shift: Additivity: for all u,v \in \mathbb{F}^{\infty}, T(u+v)=T((u_1+v_1,u_2+v_2,u_3+v_3,\cdots))=(u_2+v_2,u_3+v_3,\cdots)=(u_2,u_3,\cdots)+(v_2,v_3,\cdots)=T(u)+T(v)

      homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathbb{F}^{\infty}, T(\lambda v)=T((\lambda v_1,\lambda v_2,\lambda v_3,\cdots))=(\lambda v_2,\lambda v_3,\cdots)=\lambda (v_2,v_3,\cdots)=\lambda T(v)

    • from \mathbb{F}^{n} to \mathbb{F}^{m} : Additivity: for all u,v \in \mathbb{F}^{n},
      \begin{align*} T(u+v) &= T(u_1+v_1,\cdots,u_n+v_n)=(A_{1,1}(u_1+v_1)+\cdots+A_{1,n}(u_n+v_n),\cdots,A_{m,1}(u_1+v_1)+\cdots+A_{m,n}(u_n+v_n)) \\ &= (A_{1,1}u_1+\cdots+A_{1,n}u_n+A_{1,1}v_1+\cdots+A_{1,n}v_n , \cdots,A_{m,1}u_1+\cdots+A_{m,n}u_n+A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= (A_{1,1}u_1+\cdots+A_{1,n}u_n ,\cdots , A_{m,1}u_1+\cdots+A_{m,n}u_n)+(A_{1,1}v_1+\cdots+A_{1,n}v_n ,\cdots , A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= T(u)+T(v) \end{align*}
      homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathbb{F}^{n},
      \begin{align*} T(\lambda v)&=T(\lambda v_1+\cdots+\lambda v_n) \\ &= (\lambda A_{1,1}v_1+\cdots+\lambda A_{1,n}v_n ,\cdots , \lambda A_{m,1}v_1+\cdots+\lambda A_{m,n}v_n) \\ &= \lambda (A_{1,1}v_1+\cdots+A_{1,n}v_n ,\cdots , A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= \lambda T(v) \end{align*}

    1. You should verify that ST is indeed a linear map from U to W whenever T \in \mathcal{L}(U,V) and S \in \mathcal{L}(V,W).

    Proof Additivity: for all u,v \in U, (ST)(u+v)=S(T(u+v))=S(T(u)+T(v))=S(T(u))+S(T(v))=(ST)(u)+(ST)(v)

    homogeneity: for all \lambda \in \mathbb{F} and all u\in U, (ST)(\lambda u)=S(T(\lambda u))=S(\lambda Tu)=\lambda S(Tu)=\lambda (ST)(u)

    1. The reader should verify that \pi is indeed a linear map.

    Proof Additivity: for all v,w \in V, \pi (v+w)=(v+w)+U=(v+U)+(w+U)=\pi(v)+\pi(w)

    homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \pi (\lambda v)=\lambda v+U=\lambda (v+U)=\lambda \pi(v)

    1. The routine verification that \tilde{T} is linear is left to the reader.

    Proof Additivity: for all u,v \in V, \tilde{T}(u+\text{null }T +v+\text{null }T)=T(u+v)=T(u)+T(v)=\tilde{T}(u+\text{null }T)+\tilde{T}(v+\text{null }T)

    homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \tilde{T}(\lambda v+\text{null }T)=T(\lambda v)=\lambda T(v)=\lambda \tilde{T}(v+\text{null }T)

    1. You should construct the proof outlined in the paragraph above, even though a slicker proof is presented here. Suppose V is finite-dimensional and U is a subspace of V. Then \dim U + \dim U^0 =\dim V.

    Proof Let u_1,\cdots,u_m be a basis of U; thus \dim U =m. The linearly independent list u_1,\cdots,u_m can be extended to a basis u_1,\cdots,u_m,\cdots, u_n of V.

    Thus \dim V=n. To complete the proof, we need only show that U^0 is finite-dimensional and \dim U^0=n-m.

    Suppose \varphi_1,\cdots , \varphi_m,\cdots,\varphi_n is a basis of V', \varphi \in U^0. We can write
    \varphi =c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n
    Because u_1 \in U and \varphi \in U^0, we have
    0=\varphi(u_1)=(c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n)(u_1)=c_1
    Similarly, c_2,\cdots,c_m all are 0. Hence \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n.

    Thus \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n), which shows that U^0 \subset \text{span}(\varphi_{m+1},\cdots,\varphi_n).

    Suppose \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n). Then there exist c_{m+1},\cdots,c_n such that \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n. If (a_1,\cdots,a_m,0,\cdots,0) \in U, then
    \varphi(a_1,\cdots,a_m,0,\cdots,0)=0
    Thus \varphi \in U^0, which shows that \text{span}(\varphi_{m+1},\cdots,\varphi_n) \subset U^0.

    Hence U^0=\text{span}(\varphi_{m+1},\cdots,\varphi_n). We also know that \varphi_{1},\cdots,\varphi_n is a basis of V'. Therefore \varphi_{m+1},\cdots,\varphi_{n} is linearly independent.

    Hence it can be a basis of U^0. Thus \dim U^0=n-m.

    相关文章

      网友评论

        本文标题:《线性代数应该这样学》课内验证3-线性映射

        本文链接:https://www.haomeiwen.com/subject/bvuagltx.html