用clusterProfiler做GSEA

作者: 生信编程日常 | 来源:发表于2020-01-04 18:45 被阅读0次
    image.png

    GSEA的介绍:https://www.omicsclass.com/article/230
    GSEA有相应的软件,其实clusterProfiler除了做go term 富集,也可以做GSEA。
    首先介绍GSEA需要的文件:
    1.GSEA输入的geneList要求是数值型向量,可以是fold change,或者logFC,数值型向量的名字是基因ID,数字从高到低排序,如:

    image.png

    2.其次是需要富集的go term 及基因,形式为两列一列pathway,一列gene,如:


    image.png

    如果是需要Molecular Signature Database (MSigDB) 的数据的话,可以安装msigdf 包。

    devtools::install_github("ToledoEM/msigdf")
    library(msigdf)
    library(dplyr)
    c2 <- msigdf.human %>% 
        filter(category_code == "c2") %>% select(geneset, symbol) %>% as.data.frame
    

    如果是需要自己从go term里选择合适的数据,如大鼠的wnt 信号通路,可以

    source('GetGoTerm.R')#clusterProfiler里有这个GetGoTerm.R
    GO_DATA_NRVC <- get_GO_data("org.Rn.eg.db", "ALL", "SYMBOL")  
    Wnt_NRVCGO<-names(GO_DATA$PATHID2NAME[grep("Wnt", GO_DATA$PATHID2NAME)])
    write.csv(GO_DATA$PATHID2NAME[Wnt_NRVCGO],"NRVC_Wnt_NRVC_related.csv")
    Wnt_NRVCgo<-unlist(GO_DATA$PATHID2EXTID["GO:0016055"])
    length(Wnt_NRVCgo)
    #需要基因id转换的话,不转化id这一行可以忽略
    #Wnt_NRVC<-bitr(Wnt_NRVC, fromType="SYMBOL", toType=c("ENTREZID"), OrgDb="org.Hs.eg.db"); head(Wnt_NRVC)
    Wnt_NRVCgo<-cbind(rep("Wnt signaling pathway",368),as.data.frame(Wnt_NRVCgo))
    colnames(Wnt_NRVCgo)<-c("ont","gene")
    head(Wnt_NRVCgo)
    
    image.png

    自己制作的go term就做好了

    然后进行GSEA富集:

    library(dplyr)
    #NRVC_NM_tTag_count为edgeR输出的data.frame,其他来源均可,只要包含Fold change和基因名即可
    geneList_NRVC <-dplyr::select(NRVC_tTag_count, Row.names, logFC) 
    colnames(geneList_NRVC)[1]<-c("SYMBOL")
    geneList_NRVC.sort <- arrange(geneList_NRVC, desc(logFC)); head(geneList_NRVC.sort)
    #按FC降序
    geneList_NRVC<-geneList_NRVC.sort$logFC
    names(geneList_NRVC)<-geneList_NRVC.sort$SYMBOL
    
    
    #GSEA富集Wnt信号通路
    gsea_Wnt_NRVC <- GSEA(geneList_NRVC, TERM2GENE = Wnt_NRVCgo, verbose=FALSE, pvalueCutoff = 0.05); head(gsea_Wnt_NRVC)
    library(DOSE)
    DOSE::gseaplot(gsea_Wnt_NRVC, 1)
    
    image.png
    #GSEA富集人的c2通路
    c2 <- msigdf.human %>% 
        filter(category_code == "c2") %>% dplyr::select(geneset, symbol) %>% as.data.frame
    head(c2)
    colnames(c2)<-c("ont","gene")
    head(geneList_human)
    gsea_c2_human <- GSEA(geneList_human, TERM2GENE = c2, verbose=FALSE, pvalueCutoff = 1)
    library(DOSE)
    DOSE::gseaplot(gsea_c2_human, 1)
    
    image.png image.png

    附GetGoTerm.R的代码

    library(DOSE)
    library(GOSemSim)
    library(clusterProfiler)
    library(org.Hs.eg.db)
    library(org.Mm.eg.db)
    library(org.Rn.eg.db)
    library(dplyr)
    library(GO.db)
    #
    get_GO_data <- function(OrgDb, ont, keytype) {
      GO_Env <- get_GO_Env()
      use_cached <- FALSE
      
      if (exists("organism", envir=GO_Env, inherits=FALSE) &&
          exists("keytype", envir=GO_Env, inherits=FALSE)) {
        
        org <- get("organism", envir=GO_Env)
        kt <- get("keytype", envir=GO_Env)
        
        if (org == DOSE:::get_organism(OrgDb) &&
            keytype == kt &&
            exists("goAnno", envir=GO_Env, inherits=FALSE)) {
          ## https://github.com/GuangchuangYu/clusterProfiler/issues/182
          ## && exists("GO2TERM", envir=GO_Env, inherits=FALSE)){
          
          use_cached <- TRUE
        }
      }
      
      if (use_cached) {
        goAnno <- get("goAnno", envir=GO_Env)
      } else {
        OrgDb <- GOSemSim:::load_OrgDb(OrgDb)
        kt <- keytypes(OrgDb)
        if (! keytype %in% kt) {
          stop("keytype is not supported...")
        }
        
        kk <- keys(OrgDb, keytype=keytype)
        goAnno <- suppressMessages(
          AnnotationDbi::select(OrgDb, keys=kk, keytype=keytype,
                 columns=c("GOALL", "ONTOLOGYALL")))
        
        goAnno <- unique(goAnno[!is.na(goAnno$GOALL), ])
        
        assign("goAnno", goAnno, envir=GO_Env)
        assign("keytype", keytype, envir=GO_Env)
        assign("organism", DOSE:::get_organism(OrgDb), envir=GO_Env)
      }
      
      if (ont == "ALL") {
        GO2GENE <- unique(goAnno[, c(2,1)])
      } else {
        GO2GENE <- unique(goAnno[goAnno$ONTOLOGYALL == ont, c(2,1)])
      }
      
      GO_DATA <- DOSE:::build_Anno(GO2GENE, get_GO2TERM_table())
      
      goOnt.df <- goAnno[, c("GOALL", "ONTOLOGYALL")] %>% unique
      goOnt <- goOnt.df[,2]
      names(goOnt) <- goOnt.df[,1]
      assign("GO2ONT", goOnt, envir=GO_DATA)
      return(GO_DATA)
    }
    
    get_GO_Env <- function () {
      if (!exists(".GO_clusterProfiler_Env", envir = .GlobalEnv)) {
        pos <- 1
        envir <- as.environment(pos)
        assign(".GO_clusterProfiler_Env", new.env(), envir=envir)
      }
      get(".GO_clusterProfiler_Env", envir = .GlobalEnv)
    }
    
    get_GO2TERM_table <- function() {
      GOTERM.df <- get_GOTERM()
      GOTERM.df[, c("go_id", "Term")] %>% unique
    }
    
    get_GOTERM <- function() {
      pos <- 1
      envir <- as.environment(pos)
      if (!exists(".GOTERM_Env", envir=envir)) {
        assign(".GOTERM_Env", new.env(), envir)
      }
      GOTERM_Env <- get(".GOTERM_Env", envir = envir)
      if (exists("GOTERM.df", envir = GOTERM_Env)) {
        GOTERM.df <- get("GOTERM.df", envir=GOTERM_Env)
      } else {
        GOTERM.df <- toTable(GOTERM)
        assign("GOTERM.df", GOTERM.df, envir = GOTERM_Env)
      }
      return(GOTERM.df)
    }
    

    参考:https://guangchuangyu.github.io/cn/2018/11/msigdf_clusterprofiler/

    欢迎关注~


    用clusterProfiler做GSEA

    相关文章

      网友评论

        本文标题:用clusterProfiler做GSEA

        本文链接:https://www.haomeiwen.com/subject/cgiooctx.html