美文网首页NettyJava学习笔记首页投稿(暂停使用,暂停投稿)
自顶向下深入分析Netty(七)--ChannelPipelin

自顶向下深入分析Netty(七)--ChannelPipelin

作者: Hypercube | 来源:发表于2016-11-02 15:43 被阅读2080次
Netty架构模式

像以往一样,继续回顾这幅图。目前为止,我们学习了Netty的EventLoop、Channel以及ChannelFuture,还差最后两个部分:ByteBuf和ChannelHandler。ByteBuf作为通道读写数据的缓冲区,Channel底层数据的读写细节正是由ByteBuf完成。ChannelHandler作为处理各种事件的处理器,为用户提供实际的业务逻辑处理功能。在本章中,我们将介绍ChannelHandler以及存储它的容器ChannelPipeline。使用自顶向下的方法,首先介绍整体ChannePipeline,然后介绍ChannelHandler。

7.1 总述

7.1.1 ChannelPipeline

提到pipeline,我们首先想到的是*nix中的管道,可实现将一个程序的输出作为另一个程序的输入。ChannelPipeline也实现类似的功能,不同的是:ChannelPipeline将一个ChannelHandler的处理后的数据作为下一个ChannelHandler处理的数据源。Netty的ChannelPipeline示意图如下:

ChanelPipeline

Xnix的管道中流动的是数据,ChnanelPipeline中流动的是事件(事件中可能附加数据)。Netty定义了两种事件类型:入站(inbound)事件和出站(outbound)事件。ChannelPipeline使用拦截过滤器模式使用户可以掌控ChannelHandler处理事件的流程。注意:事件在ChannelPipeline中不自动流动而需要调用ChannelHandlerContext中诸如fileXXX()或者read()类似的方法将事件从一个ChannelHandler传播到下一个ChannelHandler。
事实上,ChannelHandler不处理具体的事件,处理具体的事件由相应的子类完成:ChannelInboundHandler处理和拦截入站事件,ChannelOutboundHandler处理和拦截出站事件。那么事件是怎么在ChannelPipeline中流动的呢?我们使用代码注释中的例子:

    ChannelPipeline p = ...;
    p.addLast("1", new InboundHandlerA());
    p.addLast("2", new InboundHandlerB());
    p.addLast("3", new OutboundHandlerA());
    p.addLast("4", new OutboundHandlerB());
    p.addLast("5", new InboundOutboundHandlerX());

对于入站事件,处理序列为:1-->2-->5;对于出站事件,处理序列为:5-->4-->3。可见,入站事件与出站事件处理顺序正好相反。事件不会在ChannelPipeline中自动流动,而完全由用户控制,所以ChannelHandler处理的代码可能如下:

    public class InboundHandlerA implements ChannelInboundHandler {
        @Override
        public void channelActive(ChannelHandlerContext ctx) {
            System.out.println("Connected!"); // 用户自定义处理逻辑
            ctx.fireChannelActive(); // 将channelActive事件传播到InboundHandlerB
        }
    }
   
    public class OutboundHandlerB extends ChannelOutboundHandler{
        @Override
        public void close(ChannelHandlerContext ctx, ChannelPromise promise) {
            System.out.println("Closing .."); // 用户自定义处理逻辑
            ctx.close(promise); // 将close事件传播到OutboundHandlerA
        }
    }

入站事件一般由I/O线程触发,以下事件为入站事件:

    ChannelRegistered() // Channel注册到EventLoop
    ChannelActive()     // Channel激活
    ChannelRead(Object) // Channel读取到数据
    ChannelReadComplete()   // Channel读取数据完毕
    ExceptionCaught(Throwable)  // 捕获到异常
    UserEventTriggered(Object)  // 用户自定义事件
    ChannelWritabilityChanged() // Channnel可写性改变,由写高低水位控制
    ChannelInactive()   // Channel不再激活
    ChannelUnregistered()   // Channel从EventLoop中注销

出站事件一般由用户触发,以下事件为出站事件:

    bind(SocketAddress, ChannelPromise) // 绑定到本地地址
    connect(SocketAddress, SocketAddress, ChannelPromise)   // 连接一个远端机器
    write(Object, ChannelPromise)   // 写数据,实际只加到Netty出站缓冲区
    flush() // flush数据,实际执行底层写
    read()  // 读数据,实际设置关心OP_READ事件,当数据到来时触发ChannelRead入站事件
    disconnect(ChannelPromise)  // 断开连接,NIO Server和Client不支持,实际调用close
    close(ChannelPromise)   // 关闭Channel
    deregister(ChannelPromise)  // 从EventLoop注销Channel

入站事件一般由I/O线程触发,用户程序员也可根据实际情况触发。考虑这样一种情况:一个协议由头部和数据部分组成,其中头部含有数据长度,由于数据量较大,客户端分多次发送该协议的数据,服务端接收到数据后需要收集足够的数据,组装为更有意义的数据传给下一个ChannelInboudHandler。也许你已经知道,这个收集数据的ChannelInboundHandler正是Netty中基本的Encoder,Encoder中会处理多次ChannelRead()事件,只触发一次对下一个ChannelInboundHandler更有意义的ChannelRead()事件。
出站事件一般由用户触发,而I/O线程也可能会触发。比如,当用户已配置ChannelOption.AutoRead选项,则I/O在执行完ChannelReadComplete()事件,会调用read()方法继续关心OP_READ事件,保证数据到达时自动触发ChannelRead()事件。
如果你初次接触Netty,会对下面的方法感到疑惑,所以列出区别:

    channelHandlerContext.close()   // close事件传播到下一个Handler
    channel.close()                 // ==channelPipeline.close()
    channelPipeline.close()         // 事件沿整个ChannelPipeline传播,注意in/outboud的传播起点

回忆AbstractChannel的构造方法:

    protected AbstractChannel(Channel parent) {
        this.parent = parent;
        unsafe = newUnsafe();
        pipeline = newChannelPipeline();
    }

    protected DefaultChannelPipeline newChannelPipeline() {
        return new DefaultChannelPipeline(this);
    }

可见,新建一个Channel时会自动新建一个ChannelPipeline,也就是说他们之间是一对一的关系。另外需要注意的是:ChannelPipeline是线程安全的,也就是说,我们可以动态的添加、删除其中的ChannelHandler。考虑这样的场景:服务器需要对用户登录信息进行加密,而其他信息不加密,则可以首先将加密Handler添加到ChannelPipeline,验证完用户信息后,主动从ChnanelPipeline中删除,从而实现该需求。

7.1.2 ChannelHandler

ChannelHandler并没有方法处理事件,而需要由子类处理:ChannelInboundHandler拦截和处理入站事件,ChannelOutboundHandler拦截和处理出站事件。我们已经明白,ChannelPipeline中的事件不会自动流动,而我们一般需求事件自动流动,Netty提供了两个Adapter:ChannelInboundHandlerAdapter和ChannelOutboundHandlerAdapter来满足这种需求。其中的实现类似如下:

    // inboud事件默认处理过程
    public void channelRegistered(ChannelHandlerContext ctx) throws Exception {
        ctx.fireChannelRegistered();    // 事件传播到下一个Handler
    }
    
    // outboud事件默认处理过程
    public void bind(ChannelHandlerContext ctx, SocketAddress localAddress,
            ChannelPromise promise) throws Exception {
        ctx.bind(localAddress, promise);  // 事件传播到下一个Handler
    }

在Adapter中,事件默认自动传播到下一个Handler,这样带来的另一个好处是:用户的Handler类可以继承Adapter且覆盖自己感兴趣的事件实现,其他事件使用默认实现,不用再实现ChannelIn/outboudHandler接口中所有方法,提高效率。
我们常常遇到这样的需求:在一个业务逻辑处理器中,需要写数据库、进行网络连接等耗时业务。Netty的原则是不阻塞I/O线程,所以需指定Handler执行的线程池,可使用如下代码:

    static final EventExecutorGroup group = new DefaultEventExecutorGroup(16);
    ...
    ChannelPipeline pipeline = ch.pipeline();
    // 简单非阻塞业务,可以使用I/O线程执行
    pipeline.addLast("decoder", new MyProtocolDecoder());
    pipeline.addLast("encoder", new MyProtocolEncoder());
    // 复杂耗时业务,使用新的线程池
    pipeline.addLast(group, "handler", new MyBusinessLogicHandler());

ChannelHandler中有一个Sharable注解,使用该注解后多个ChannelPipeline中的Handler对象实例只有一个,从而减少Handler对象实例的创建。代码示例如下:

    public class DataServerInitializer extends ChannelInitializer<Channel> {
       private static final DataServerHandler SHARED = new DataServerHandler();
  
       @Override
       public void initChannel(Channel channel) {
           channel.pipeline().addLast("handler", SHARED);
       }
   }

Sharable注解的使用是有限制的,多个ChannelPipeline只有一个实例,所以该Handler要求无状态。上述示例中,DataServerHandler的事件处理方法中,不能使用或改变本身的私有变量,因为ChannelHandler是非线程安全的,使用私有变量会造成线程竞争而产生错误结果。

7.1.3 ChannelHandlerContext

Context指上下文关系,ChannelHandler的Context指的是ChannleHandler之间的关系以及ChannelHandler与ChannelPipeline之间的关系。ChannelPipeline中的事件传播主要依赖于ChannelHandlerContext实现,由于ChannelHandlerContext中有ChannelHandler之间的关系,所以能得到ChannelHandler的后继节点,从而将事件传播到下一个ChannelHandler。
ChannelHandlerContext继承自AttributeMap,所以提供了attr()方法设置和删除一些状态属性值,用户可将业务逻辑中所需使用的状态属性值存入到Context中。此外,Channel也继承自AttributeMap,也有attr()方法,在Netty4.0中,这两个attr()方法并不等效,这会给用户程序员带来困惑并且增加内存开销,所以Netty4.1中将channel.attr()==ctx.attr()。在使用Netty4.0时,建议只使用channel.attr()防止引起不必要的困惑。
一个Channel对应一个ChannelPipeline,一个ChannelHandlerContext对应一个ChannelHandler,但一个ChannelHandler可以对应多个ChannelHandlerContext。当一个ChannelHandler使用Sharable注解修饰且添加同一个实例对象到不用的Channel时,只有一个ChannelHandler实例对象,但每个Channel中都有一个ChannelHandlerContext对象实例与之对应。

相关文章

网友评论

  • 达微:ChannelPipeline 上会不会出现消息堆积的现象,遇到个问题,一个终端没秒钟会发送400多条数据到服务端,部分数据ChannelRead没进去,终端不发这么频繁的时候程序正常
    达微:@重塑_d25f 官方说:业务线程,与io线程分离,如果业务线程耗时不严重的话,可以放在一起,避免线程上下文切换浪费时间,如果业务处理耗时严重,优化业务处理,想办法用缓存,或者channelRead直接把消息丢给业务线程池或者消息队列就返回不阻塞io线程
    d18d23cb319b:@达微 最后怎么解决的
  • 8c87ae939d4e:初学者之前一直不明白类似bind和read此类的方法为什么算是出站事件,这不是在服务端收集信息阶段的必经过程吗。。前辈文中通过行为发起者来区分入站和出站让我似乎找到了点方向了,但还是比较模糊。注册账号留言希望各位明白人赐教

本文标题:自顶向下深入分析Netty(七)--ChannelPipelin

本文链接:https://www.haomeiwen.com/subject/igwjuttx.html