——————
持续更新
关键词:Genome Size Estimation; Kmer
一.Kmer评估法简介
假如有一批二代或三代基因组测序数据,计算基因组覆盖深度:
base_coverage_depth = Total_base_num/genome_size=(read_num * read_length)/genome_size
同样,Kmer覆盖深度,即Kmer频率曲线中的峰值,可计算:
Kmer_coverage_depth= Total_kmer_num/genome_size = read_num * (read_length - kmer_size + 1)/genome_size
基因组覆盖深度和Kmer深度的关系:
Kmer_coverage_depth = base_coverage_depth * (read_length - Kmer_size + 1)/read_length
如果基因组深度为50X,read_length = 100,Kmer_size = 21,则Kmer深度:
Kmer_coverage_depth = 50 * (100 -21 + 1)/100,刚好是Kmer分布图中的peak。
kmer峰值图可以看到基因组覆盖度
多态性(polymorphism):由于多倍体物种的杂合性,即同源染色体上的相同位置的碱基差异,SNV等,同导致Kmer分布图出现亚峰(sub-peak)。如果主峰是50,多态性导致Kmer频率减半,亚峰则会在100左右。
二.软件评估
1.jellyfish
#对Kmer计数,使用fastq/fasta文件均可
# -s是预估哈希表的大小,即G+G*c*e*k。G是Genome Size;c是coverage;e是测序错误率(illumina为1%);k是kmer大小
# 输入只能的未压缩的文件,如若输入压缩文件,会报错:terminate called after throwing an instance of 'std::runtime_error'
$ jellyfish count -m 16 -s 100M -t 24 -o mer_counts -c 7 input.fastq
$ jellyfish histo -f mer_counts >mer_counts.histo
对于结果的可视化,在github上找到了相应工具
https://github.com/josephryan/estimate_genome_size.pl
$ jellyplot.pl mer_counts.histo
# use find_valleys.pl to help pinpoint the actual peak
find_valleys.pl mer_counts.histo
# estimate the size and coverage
estimate_genome_size.pl --kmer=31 --peak=42 --fastq=reads1.fastq.gz reads2.fastq.gz
2.KmerFreq_AR(SOAPdenovo2工具包)
# 用90G和全部数据测试
$ KmerFreq_AR -k 17 -t 8 -q 33 -p soapec_90g -b 90000000000 reads.list >KmerFreq_90g.log 2>KmerFreq_90g.error
$ KmerFreq_AR -k 17 -t 8 -q 33 -p soapec_all reads.list >KmerFreq_all.log 2>KmerFreq_all.error
# 评估结果在soapec_90g.genome_estimate,soapec_all.genome_estimate文件中
3.kmergenie
可通过设置kmer最小值(-l),最大值(-k)及间隔kmer大小(-s)去设置多个kmer,结果可生成多个kmer评估频谱及可视化pdf文件
$ kmergenie reads.list --diploid -k 121 -l 19 -s 6 -o histograms.hiseq >histograms.hiseq.log 2>histograms.hiseq.err
我这段代码测试了Kmer 19之121,但是结果是19还准,25还行,之后的都不靠谱了。随着Kmer值增大,峰值会左移,再逐渐没有峰值。kmer还是17-25之间更靠谱。
网友评论