美文网首页
MIT 线性代数 5.置换-转置-向量空间

MIT 线性代数 5.置换-转置-向量空间

作者: 光能蜗牛 | 来源:发表于2022-05-26 15:22 被阅读0次

1.置换矩阵

前面讲A=LU分解的时候我们限定是A在消元过程中不需要行互换
而实际上我们经常会需要对A做行互换
也就是我们可以扩展写为
PA=LU
其中P表示Permunation。即置换矩阵
也就是说对于特殊的A,因为不需要行互换,所以其P矩阵刚好是单位矩阵,因此就是特殊的
A=LU的形式
显然,大部分矩阵的一般情况都是
PA=LU

2.转置矩阵

假设有矩阵
A=\begin{bmatrix}a&b\\c&d\end{bmatrix}
A^T=\begin{bmatrix}a&c\\b&d\end{bmatrix}

A^TA=\begin{bmatrix}a&c\\b&d\end{bmatrix}\begin{bmatrix}a&b\\c&d\end{bmatrix}=\begin{bmatrix}a^2+c^2&ab+cd\\ab+cd&b^2+d^2\end{bmatrix}
可以观察到上面这个矩阵是一个对称阵
其实证明也很简单
试着对A^TA取个转置
(A^TA)^T=A^T(A^T)^T=A^TA
也就是说转置矩阵有一个重要的性质,即即任意的矩阵通过
A^TA或者AA^T的形式都可以构造出对称矩阵

3.向量空间

R^n

R^n表示所有的n维向量构成的空间,且所有的这些向量空间里的向量之间的运算,包括数乘,相加减得到的向量依然在该向量空间

子空间

具体一点给个例子,比如说R^2子空间,
其子空间有:
1.R^2自身
2.任意过原点的直线
3.原点本身
具体来说,子空间必须满足子空间内部的所有元素必须满足数乘和加减依然在子空间内部

思考说R^3子空间:
1.R^3自身
2.任意过原点的平面
3.任意过原点的直线
4.原点本身

思考对于矩阵A=\begin{bmatrix}1&4\\7&1\\8&9\end{bmatrix}
这里我们把列向量
\begin{bmatrix}1\\7\\8\end{bmatrix}\begin{bmatrix}4\\1\\9\end{bmatrix}称之为矩阵A的列空间,因为由这两个向量,经过对他们进行组合可以得到任意过原点的平面,也就是子空间

相关文章

  • MIT 线性代数 5.置换-转置-向量空间

    1.置换矩阵 前面讲分解的时候我们限定是A在消元过程中不需要行互换而实际上我们经常会需要对A做行互换也就是我们可以...

  • MIT-18.06-线性代数(第五讲)

    第五讲 —— 转置、置换、向量空间 1. 置换与转置 1.1 置换 置换矩阵,记为,是用来完成行互换的矩阵。,该描...

  • 【MIT】05-置换-转置-消元-向量空间+子空间

    内容 第五课主要讲的内容主要包括置换矩阵P(可用于行变换的矩阵),转置矩阵T和向量空间及其子空间。 置换矩阵Per...

  • 第5课 转置-置换向量空间R

    大纲 转换线性代数的大门“向量空间” 置换 置换矩阵: 记作P,用来完成行列互换的矩阵。作用, 置换行得到主元(检...

  • 2D射影几何与变换

    1.基本表示 列向量:粗体符号如x总是表示列向量,其转置表示行向量。 欧氏空间:,为维度。 射影空间:,为维度。 ...

  • 机器学习里的数学基础——矩阵论

    1. 基本概念 1.1 向量及其转置 一个维列向量及其转置可记作: 1.2 矩阵及其转置 一个的矩阵及其的转置矩阵...

  • 矩阵求导

    "前导不变后导转置向量"向量求导法则

  • 深度学习之线性代数

    标量、向量、矩阵和张量 转置(transpose)是矩阵的重要操作之一。 向量可以看做只有一列的矩阵。向量的转置可...

  • 线性代数(待续)

    一、概述 线性代数主要包含向量、向量空间(或称线性空间)以及向量的线性变换和有限维的线性方程组。 1.1 向量 标...

  • 线性代数的本质(笔记1)

    本文来自blibli (线性代数的本质) 1. 向量究竟是什么 1.1向量(Vector): 物理领域,向量是空间...

网友评论

      本文标题:MIT 线性代数 5.置换-转置-向量空间

      本文链接:https://www.haomeiwen.com/subject/lynfsrtx.html