一.样本表达分布
箱式图
##魔鬼操作一键清空,以防前面出现的变量名干扰后续的操作
rm(list = ls())
options(stringsAsFactors = F)
# 加载原始表达的数据
lname <- load(file = "Step01-airwayData.Rdata")
lname
exprSet <- express_cpm
exprSet[1:6,1:6]
# 样本表达总体分布-箱式图
library(ggplot2)
# 构造绘图数据
data <- data.frame(expression=c(exprSet),sample=rep(colnames(exprSet),each=nrow(exprSet)))
head(data)
p <- ggplot(data = data,aes(x=sample,y=expression,fill=sample))
p1 <- p + geom_boxplot() + theme(axis.text.x = element_text(angle = 90)) + xlab(NULL) + ylab("log2(CPM+1)")
p1
# 保存图片
pdf(file = "../Analysis/sample_cor/sample_boxplot.pdf",width = 6,height = 8)
print(p1)
dev.off()
为何即使组与组之间即使有生物学上的差异,但是箱式图中却没有表现出来呢?这是
基于前提假设:大多数情况下发生差异表达的基因只是很少的一部分,并且发生差异表达的基因不足以改变整体所有基因表达水平的分布;如果看样本的总体表达分布差异非常大的话,不是由于生物水平差异导致的,是误差导致的【比如不同人做实验、机子、protocol】
小提琴图
image.png# 样本表达总体分布-小提琴图
p2 <- p + geom_violin() + theme(axis.text = element_text(size = 12),axis.text.x = element_text(angle = 90)) + xlab(NULL) + ylab("log2(CPM+1)")
p2
# 保存图片
pdf(file = "../Analysis/sample_cor/sample_violin.pdf",width = 6,height = 8)
print(p2)
dev.off() #打开画板要养成关掉的习惯
与箱式图结合发现,其实位于中位数的数量不是最多的
概率密度分布图
# 样本表达总体分布-概率密度分布图
m <- ggplot(data=data, aes(x=expression))
p3 <- m + geom_density(aes(fill=sample, colour=sample),alpha = 0.2) + xlab("log2(CPM+1)")
p3
# 保存图片
pdf(file = "../Analysis/sample_cor/sample_density.pdf",width = 7,height = 8)
print(p3)
dev.off()
不仅可以看单个样本的表达趋势,还可以看多个样本的表达趋势;可以判断是否有异常的样本;图上不同样本的表达性就非常一致
以上三个图结合起来可以看总体样本表达分布图
二.样本的相关性
-
层次聚类树————通过计算点与点之间的空间距离对样本进行类别划分
# 魔幻操作,一键清空
rm(list = ls())
options(stringsAsFactors = F)
# 加载数据并检查
lname <- load(file = '../Analysis/data/Step01-airwayData.Rdata')
lname
dat <- express_cpm
dat[1:6,1:6]
dim(dat)
## 1.样本之间的相关性-层次聚类树----
sampleTree <- hclust(dist(t(dat)), method = "average") ##dist是计算距离【按照行来算的】,所以要用t来转置 ,把距离矩阵算完之后,开始聚类了使用的是:hclust函数
plot(sampleTree)
-
PCA主成分分析————提取样本的综合特征,即主成分(第一主成分、第二主成分)对样本进行分类
## 2.样本之间的相关性-PCA----
# 第一步,数据预处理
dat <- as.data.frame(t(dat)) ##转置
dat$group_list <- group_list ##添加group信息
# 第二步,绘制PCA图
library(FactoMineR)
library(factoextra)
# 画图仅需要数值型数据,去掉最后一列的分组信息
dat_pca <- PCA(dat[,-ncol(dat)], graph = FALSE)
class(dat_pca)
p <- fviz_pca_ind(dat_pca,
geom.ind = "text", # 只显示点,不显示文字
col.ind = dat$group_list, # 用不同颜色表示分组
palette = c("#00AFBB", "#E7B800"),
addEllipses = T, # 是否圈起来
legend.title = "Groups")
p
-
相关性分析
# 使用500个基因的表达量来做相关性图
library(corrplot)
dim(exprSet)
# 计算相关性
M <- cor(exprSet) #M是一个对称矩阵
g <- corrplot(M,order = "AOE",addCoef.col = "white")
##可视化corrplot
corrplot(M,order = "AOE",type="upper",tl.pos = "d")
corrplot(M,add=TRUE, type="lower", method="number",order="AOE",diag=FALSE,tl.pos="n", cl.pos="n")
# 绘制样本相关性的热图
anno <- data.frame(sampleType=group_list) ##最重要的地方就是矩阵的行名是数据框的列名
rownames(anno) <- colnames(exprSet)
anno
p <- pheatmap::pheatmap(M,display_numbers = T,annotation_col = anno,fontsize = 11,cellheight = 28,cellwidth = 28)
p
pdf(file = "../Analysis/sample_cor/cor.pdf")
print(p)
dev.off()
image.png
image.png
三、差异分析
三大分析方法:limma、edgeR、DESeq2【原始输入数据都是count值】————用于高通量测序,不能用于基因芯片
基本理论
image.png很多指标是对FC取了log,那么logFC>0,B相对于A就是上调;反之亦然【对表达水平较低的基因敏感,对表达水平高的不敏感】 image.png
可以理解为对P值做的矫正
image.png
limma差异分析
# 清空当前对象
rm(list = ls())
options(stringsAsFactors = F)
# 读取基因表达矩阵
lname <- load(file = "Step01-airwayData.Rdata")
lname
exprSet <- filter_count
# 检查表达谱
dim(exprSet)
exprSet[1:6,1:6]
table(group_list)
# 加载包
library(limma)
library(edgeR)
## 第一步,创建设计矩阵和对比:假设数据符合正态分布,构建线性模型
# 0代表x线性模型的截距为0
design <- model.matrix(~0+factor(group_list)) ##0是线性模型的截距
colnames(design) <- levels(factor(group_list))
rownames(design) <- colnames(exprSet)
design
两列八行
# 设置需要进行对比的分组,需要修改
comp <- 'trt-untrt' ##不要设置反了
cont.matrix <- makeContrasts(contrasts=c(comp),levels = d esign)
## 第二步,进行差异表达分析
# 将表达矩阵转换为edgeR的DGEList对象
dge <- DGEList(counts=exprSet)
# 进行标准化
dge <- calcNormFactors(dge)
#Use voom() [15] to convert the read counts to log2-cpm, with associated weights, ready for linear modelling:
v <- voom(dge,design,plot=TRUE, normalize="quantile")
fit <- lmFit(v, design)
fit2 <- contrasts.fit(fit,cont.matrix)
fit2 <- eBayes(fit2)
## 第三步,提取过滤差异分析结果
tmp <- topTable(fit2, coef=comp, n=Inf,adjust.method="BH")
DEG_limma_voom <- na.omit(tmp)
head(DEG_limma_voom)
# 筛选上下调,设定阈值
fc_cutoff <- 2
fdr <- 0.05
DEG_limma_voom$regulated <- "normal"
loc_up <- intersect(which(DEG_limma_voom$logFC>log2(fc_cutoff)),which(DEG_limma_voom$adj.P.Val<fdr))
loc_down <- intersect(which(DEG_limma_voom$logFC< (-log2(fc_cutoff))),which(DEG_limma_voom$adj.P.Val<fdr))
DEG_limma_voom$regulated[loc_up] <- "up"
DEG_limma_voom$regulated[loc_down] <- "down"
table(DEG_limma_voom$regulated)
# 添加一列gene symbol
library(org.Hs.eg.db)
keytypes(org.Hs.eg.db)
library(clusterProfiler)
id2symbol <- bitr(rownames(DEG_limma_voom), fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Hs.eg.db )
head(id2symbol)
symbol <- rep("NA",time=nrow(DEG_limma_voom))
symbol[match(id2symbol[,1],rownames(DEG_limma_voom))] <- id2symbol[,2]
DEG_limma_voom <- cbind(rownames(DEG_limma_voom),symbol,DEG_limma_voom)
colnames(DEG_limma_voom)[1] <- "GeneID"
# 保存
write.table(DEG_limma_voom,"DEG_limma_voom_all-1.xls",row.names = F,sep="\t",quote = F)
## 取表达差异倍数和p值,矫正后的pvalue
DEG_limma_voom <- DEG_limma_voom[,c(1,2,3,6,7,9)]
save(DEG_limma_voom, file = "Step03-limma_voom_nrDEG.Rdata")
## 检查是否上下调设置错了
# 挑选一个差异表达基因
head(DEG_limma_voom)
exp <- c(t(express_cpm[match("ENSG00000178695",rownames(express_cpm)),]))
test <- data.frame(value=exp,group=group_list)
library(ggplot2)
ggplot(data=test,aes(x=group,y=value,fill=group)) + geom_boxplot()
edgeR差异分析
rm(list = ls())
options(stringsAsFactors = F)
# 读取基因表达矩阵信息
lname <- load(file = "../Analysis/data/Step01-airwayData.Rdata")
lname
# 查看分组信息和表达矩阵数据
exprSet <- filter_count
dim(exprSet)
exprSet[1:6,1:6]
table(group_list)
# 加载包
library(DESeq2)
# 第一步,构建DESeq2的DESeq对象
colData <- data.frame(row.names=colnames(exprSet),group_list=group_list)
dds <- DESeqDataSetFromMatrix(countData = exprSet,colData = colData,design = ~ group_list)
# 第二步,进行差异表达分析
dds2 <- DESeq(dds)
# 提取差异分析结果,trt组对untrt组的差异分析结果
tmp <- results(dds2,contrast=c("group_list","trt","untrt"))
DEG_DESeq2 <- as.data.frame(tmp[order(tmp$padj),])
head(DEG_DESeq2)
# 去除差异分析结果中包含NA值的行
DEG_DESeq2 = na.omit(DEG_DESeq2)
# 筛选上下调,设定阈值
fc_cutoff <- 2
fdr <- 0.05
DEG_DESeq2$regulated <- "normal"
loc_up <- intersect(which(DEG_DESeq2$log2FoldChange>log2(fc_cutoff)),which(DEG_DESeq2$padj<fdr))
loc_down <- intersect(which(DEG_DESeq2$log2FoldChange< (-log2(fc_cutoff))),which(DEG_DESeq2$padj<fdr))
DEG_DESeq2$regulated[loc_up] <- "up"
DEG_DESeq2$regulated[loc_down] <- "down"
table(DEG_DESeq2$regulated)
# 添加一列gene symbol
library(org.Hs.eg.db)
keytypes(org.Hs.eg.db)
library(clusterProfiler)
id2symbol <- bitr(rownames(DEG_DESeq2), fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Hs.eg.db )
head(id2symbol)
symbol <- rep("NA",time=nrow(DEG_DESeq2))
symbol[match(id2symbol[,1],rownames(DEG_DESeq2))] <- id2symbol[,2]
DEG_DESeq2 <- cbind(rownames(DEG_DESeq2),symbol,DEG_DESeq2)
colnames(DEG_DESeq2)[1] <- "GeneID"
head(DEG_DESeq2)
# 保存
write.table(DEG_DESeq2,"../Analysis/deg_analysis/DEG_DESeq2_all.xls",row.names = F,sep="\t",quote = F)
## 取表达差异倍数和p值,矫正后的pvalue并保存
colnames(DEG_DESeq2)
DEG_DESeq2 <- DEG_DESeq2[,c(1,2,4,7,8,9)]
save(DEG_DESeq2, file = "../Analysis/deg_analysis/Step03-DESeq2_nrDEG.Rdata")
## 检查是否上下调设置错了
# 挑选一个差异表达基因
head(DEG_DESeq2)
exp <- c(t(express_cpm[match("ENSG00000152583",rownames(express_cpm)),]))
test <- data.frame(value=exp,group=group_list)
library(ggplot2)
ggplot(data=test,aes(x=group,y=value,fill=group)) + geom_boxplot()
image.png
差异结果可视化
image.pngimage.png
rm(list = ls())
options(stringsAsFactors = F)
# 加载原始表达矩阵
load(file = "Step01-airwayData.Rdata")
# 读取3个软件的差异分析结果
load(file = "Step03-limma_voom_nrDEG.Rdata")
load(file = "Step03-DESeq2_nrDEG.Rdata")
load(file = "Step03-edgeR_nrDEG.Rdata")
ls()
# 根据需要修改DEG的值
data <- DEG_limma_voom
colnames(data)
# 绘制火山图
library(ggplot2)
colnames(data)
p <- ggplot(data=data, aes(x=logFC, y=-log10(adj.P.Val),color=regulated)) +
geom_point(alpha=0.5, size=1.8) + theme_set(theme_set(theme_bw(base_size=20))) +
xlab("log2FC") + ylab("-log10(FDR)") +scale_colour_manual(values = c('blue','black','red'))
p
image.png
网友评论