基因表达数据预多种临床数据密切相关,特别是这些数据对患者的预后生存判断非常重要。对于芯片(microarray)的预后,HyungJun Cho等开发了基于COX模型的部分似然函数算法的R包rbsurv
,能够方便的选取关键基因。它的特点在于,可以根据认为的设置产生多个由预后相关基因构建的预后模型。最难能可贵的是,虽然这个R包发表与2009年,但到现在作者还在更新中。
示例数据
# BiocManager::install("rbsurv",ask = F,update = F)
library(rbsurv)
data("gliomaSet")
gliomaSet
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 100 features, 85 samples
## element names: exprs
## protocolData: none
## phenoData
## sampleNames: Chip1 Chip2 ... Chip85 (85 total)
## varLabels: Time Status Age Gender
## varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
## pubMedIds: 15374961
## Annotation:
数据整理
x <- exprs(gliomaSet) # 表达矩阵
x <- log2(x) #log转换
time <- gliomaSet$Time
status <- gliomaSet$Status
z <- cbind(gliomaSet$Age, gliomaSet$Gender)
模型一
fit <- rbsurv(time=time, status=status, x=x, method="efron", max.n.genes=20)
## Please wait... Done.
fit$model
## Seq Order Gene nloglik AIC Selected
## 0 1 0 0 228.74 457.47
## 110 1 1 46 218.53 439.05 *
## 2 1 2 57 202.21 408.42 *
## 3 1 3 43 195.50 396.99 *
## 4 1 4 34 194.01 396.01 *
## 5 1 5 99 192.14 394.29 *
## 6 1 6 36 189.81 391.63 *
## 7 1 7 8 188.80 391.59 *
## 8 1 8 86 187.90 391.80
## 9 1 9 68 187.52 393.04
## 10 1 10 56 187.42 394.84
## 11 1 11 15 186.68 395.37
## 12 1 12 29 185.54 395.09
## 13 1 13 75 185.54 397.09
## 14 1 14 67 185.41 398.83
## 15 1 15 40 183.76 397.52
## 16 1 16 98 183.04 398.09
## 17 1 17 19 182.25 398.49
## 18 1 18 39 181.99 399.98
## 19 1 19 96 181.88 401.76
模型二
如果有重要的因子,还可以对预后模型进行校正。
注意:这个耗费时间比较长,大家量力而为。
fit <- rbsurv(time=time, status=status, x=x, z=z, alpha=0.05, gene.ID=NULL,
method="efron", max.n.genes=100, n.iter=100, n.fold=3,
n.seq=3, seed = 1234)
fit$model
文章实战一
[Identification of an apoptosis-related prognostic gene signature and molecular subtypes of clear cell renal cell carcinoma (ccRCC)(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100811/#SM0)
文献实战二
文献实战三
A seven-gene signature predicts overall survival of patients with colorectal cancer
参考文献:
Robust Likelihood-Based Survival Modeling with Microarray Data.” Journal of Statistical Software
网友评论