【R>>rbsurv】hub基因的筛序

作者: 高大石头 | 来源:发表于2021-05-23 23:53 被阅读0次

    基因表达数据预多种临床数据密切相关,特别是这些数据对患者的预后生存判断非常重要。对于芯片(microarray)的预后,HyungJun Cho等开发了基于COX模型的部分似然函数算法的R包rbsurv,能够方便的选取关键基因。它的特点在于,可以根据认为的设置产生多个由预后相关基因构建的预后模型。最难能可贵的是,虽然这个R包发表与2009年,但到现在作者还在更新中。

    示例数据

    # BiocManager::install("rbsurv",ask = F,update = F)
    library(rbsurv)
    data("gliomaSet")
    gliomaSet
    
    ## ExpressionSet (storageMode: lockedEnvironment)
    ## assayData: 100 features, 85 samples 
    ##   element names: exprs 
    ## protocolData: none
    ## phenoData
    ##   sampleNames: Chip1 Chip2 ... Chip85 (85 total)
    ##   varLabels: Time Status Age Gender
    ##   varMetadata: labelDescription
    ## featureData: none
    ## experimentData: use 'experimentData(object)'
    ##   pubMedIds: 15374961 
    ## Annotation:
    

    数据整理

    x <- exprs(gliomaSet) # 表达矩阵
    x <- log2(x) #log转换
    time <- gliomaSet$Time
    status <- gliomaSet$Status
    z <- cbind(gliomaSet$Age, gliomaSet$Gender)
    

    模型一

    fit <- rbsurv(time=time, status=status, x=x, method="efron", max.n.genes=20)
    
    ## Please wait... Done.
    
    fit$model
    
    ##     Seq Order Gene nloglik    AIC Selected
    ## 0     1     0    0  228.74 457.47         
    ## 110   1     1   46  218.53 439.05 *       
    ## 2     1     2   57  202.21 408.42 *       
    ## 3     1     3   43  195.50 396.99 *       
    ## 4     1     4   34  194.01 396.01 *       
    ## 5     1     5   99  192.14 394.29 *       
    ## 6     1     6   36  189.81 391.63 *       
    ## 7     1     7    8  188.80 391.59 *       
    ## 8     1     8   86  187.90 391.80         
    ## 9     1     9   68  187.52 393.04         
    ## 10    1    10   56  187.42 394.84         
    ## 11    1    11   15  186.68 395.37         
    ## 12    1    12   29  185.54 395.09         
    ## 13    1    13   75  185.54 397.09         
    ## 14    1    14   67  185.41 398.83         
    ## 15    1    15   40  183.76 397.52         
    ## 16    1    16   98  183.04 398.09         
    ## 17    1    17   19  182.25 398.49         
    ## 18    1    18   39  181.99 399.98         
    ## 19    1    19   96  181.88 401.76
    

    模型二

    如果有重要的因子,还可以对预后模型进行校正。

    注意:这个耗费时间比较长,大家量力而为。

    fit <- rbsurv(time=time, status=status, x=x, z=z, alpha=0.05, gene.ID=NULL,
                  method="efron", max.n.genes=100, n.iter=100, n.fold=3,
                  n.seq=3, seed = 1234)
    fit$model
    

    文章实战一

    [Identification of an apoptosis-related prognostic gene signature and molecular subtypes of clear cell renal cell carcinoma (ccRCC)(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100811/#SM0)

    文献实战二

    A Glycolysis-Related Five-Gene Signature Predicts Biochemical Recurrence-Free Survival in Patients With Prostate Adenocarcinoma

    文献实战三

    A seven-gene signature predicts overall survival of patients with colorectal cancer

    参考文献:
    Robust Likelihood-Based Survival Modeling with Microarray Data.” Journal of Statistical Software

    相关文章

      网友评论

        本文标题:【R>>rbsurv】hub基因的筛序

        本文链接:https://www.haomeiwen.com/subject/wtetsltx.html