美文网首页生信生信程序员基因组数据绘图
基因功能富集调控网络分析--FGNet

基因功能富集调控网络分析--FGNet

作者: 尧小飞 | 来源:发表于2019-07-04 17:38 被阅读172次

    FGNet介绍

      FGNet(Functional Gene Networks derived from biological enrichment analyses)允许在基因或表达集列表上执行功能富集分析(FEA),并将结果转换为网络。由此产生的功能网络提供了基因/术语的生物学功能的概述,并且允许容易地看到基因之间的链接,簇之间的重叠,发现关键基因等。

    Examples of functional network for different analyses
      其实主要是通过输入基因list,然后使用别的工具进行注释富集分析(比如:DAVID、GeneTerm Linker、TopGO、GAGE ),然后对某个或者几个功能进行富集分析。最后进行网络可视化、寻找核心基因。

    FGNet安装

      通过bioconductor安装,并且由于需要其他第三方包进行注释富集分析,建议也安装其他必须的软件包。

    if (!requireNamespace("BiocManager", quietly=TRUE))
        install.packages("BiocManager")
    BiocManager::install("FGNet")
    BiocManager::install(c("RGtk2", "RCurl","RDAVIDWebService", "gage", "topGO",  "GO.db", "KEGG.db", "reactome.db", "org.Sc.sgd.db"))
    

    测试

      注释富集一共有四个工具可以进行,但是由于集群的问题,只能有三个工具能够用,分别为:DAVID、TopGO、GAGE,并在这里展示着三个工具初步结果。

    基因集准备

    #Here is an example analyzing a gene list with the different tools:
    genesYeast <- c("ADA2", "APC1", "APC11", "APC2", "APC4", "APC5", "APC9", "CDC16", 
                    "CDC23", "CDC26", "CDC27", "CFT1", "CFT2", "DCP1", "DOC1", "FIP1", 
                    "GCN5", "GLC7", "HFI1", "KEM1", "LSM1", "LSM2", "LSM3", "LSM4", 
                    "LSM5", "LSM6", "LSM7", "LSM8", "MPE1", "NGG1", "PAP1", "PAT1", 
                    "PFS2", "PTA1", "PTI1", "REF2", "RNA14", "RPN1", "RPN10", "RPN11", 
                    "RPN13", "RPN2", "RPN3", "RPN5", "RPN6", "RPN8", "RPT1", "RPT3", 
                    "RPT6", "SGF11", "SGF29", "SGF73", "SPT20", "SPT3", "SPT7", "SPT8", 
                    "TRA1", "YSH1", "YTH1")
    library(org.Sc.sgd.db)
    geneLabels <- unlist(as.list(org.Sc.sgdGENENAME))
    genesYeast <- sort(geneLabels[which(geneLabels %in% genesYeast)])
    
    # Optional: Gene expression (1=UP, -1=DW)
    genesYeastExpr <- setNames(c(rep(1,28), rep(-1,30)),genesYeast) 
    

    注释富集分析

    #######DAVID
    feaResults_David <- fea_david(names(genesYeast), geneLabels=genesYeast)#email="example@email.com"
    #######TopGO
    feaResults_topGO <- fea_topGO(genesYeast, geneIdType="GENENAME", organism="Sc") 
    #######Gene-Term Linker  报错
    # jobID <- fea_gtLinker(geneList=genesYeast, organism="Sc")
    # ?fea_gtLinker
    # jobID <- 3907019
    # feaResults_gtLinker <- fea_gtLinker_getResults(jobID=jobID, organism="Sc")
    ######GAGE
    library(gage)
    data(gse16873)
    # Set gene labels? (they need to have unique identifiers)
    library(org.Hs.eg.db)
    geneSymbols <- select(org.Hs.eg.db,columns="SYMBOL",keytype="ENTREZID",keys=rownames(gse16873))
    geneLabels <- geneSymbols$SYMBOL
    names(geneLabels) <- geneSymbols$ENTREZID
    head(geneLabels)
    #GAGE:
    feaResults_gage <- fea_gage(eset=gse16873,refSamples=grep('HN',colnames(gse16873)),compSamples=grep('DCIS',colnames(gse16873)),geneLabels=geneLabels, annotations="REACTOME",geneIdType="ENTREZID", organism="Hs")
    ###生成结题报告
    FGNet_report(feaResults_David, geneExpr=genesYeastExpr)
    FGNet_report(feaResults_topGO, geneExpr=genesYeastExpr)  
    #FGNet_report(feaResults_gtLinker, geneExpr=genesYeastExpr)
    FGNet_report(feaResults_gage)
    

    测试结果

      Functional enrichment with DAVID:

    DAVID结果概览
    Distances between Clusters
      Functional enrichment with topGO:

    topGO结果概览
      Functional enrichment with gage:

    gage结果概览
      上述三种结果的内容几乎一样,虽然输入基因list一样,但是他们富集聚类结果不一样,主要是三种富集的方式方法不一致造成的。

    其他结果筛选

      上文介绍了普通的功能忘了富集网络分析结果,但是我们对得到初步结果往往不能直接用于后续分析,因此我们需要对结果进行筛选,这里将介绍接种筛选的方式,其他的筛选方式见官方说明文档

      Genes - Terms networks筛选命令如下:

    ##Genes - Terms networks
    gtSets <- feaResults_David$geneTermSets
    gtSets <- gtSets[gtSets$Cluster %in% c(9),] 
    gtSets <- gtSets[gtSets$Pop.Hits<500,]
    termsGenes <- t(fea2incidMat(gtSets, clusterColumn="Terms")$clustersMatrix)
    library(R.utils)
    rownames(termsGenes) <- sapply(strsplit(rownames(termsGenes), ":"),function(x) capitalize(x[length(x)]))
    termsGenes[1:5,1:5]
    pdf('Genes_Terms_networks.pdf',w=12,h=8)
    functionalNetwork(t(termsGenes), plotType="bipartite", keepAllNodes=TRUE,legendPrefix="", plotTitle="Genes - Terms network", plotTitleSub="",geneExpr=genesYeastExpr, plotExpression="Fill")
    functionalNetwork(termsGenes, plotType="bipartite", keepAllNodes=TRUE,legendPrefix="", plotTitle="Genes - Terms network", plotTitleSub="")
    dev.off()
    
    Genes - Terms networks
      上述图中方块代表关键的基因,圆圈代表GO Term
    .

      Selecting specific clusters筛选命令如下:

    ##Selecting specific clusters
    incidMat <- fea2incidMat(feaResults_David)
    distMat <- clustersDistance(incidMat)
    selectedClusters <- rep(FALSE, nrow(feaResults_David$clusters))
    selectedClusters[c(8,9,11)] <- TRUE
    tmpFea <- feaResults_David
    tmpFea$clusters <- cbind(tmpFea$clusters, select=selectedClusters)
    incidMatSelection <- fea2incidMat(tmpFea, filterAttribute="select", filterOperator="!=",filterThreshold="TRUE")
    pdf('Selecting_specific_clusters.pdf',w=12,h=8)
    functionalNetwork(incidMatSelection, eColor=NA)
    dev.off()
    
    Selecting specific clusters
      上述图中不同颜色代表不同的聚类,这里我们只选择了8,9,11三个聚类,因此图只展示了这三个聚类,通过此方法,可以只展示任何感兴趣的聚类。

    此文仅仅记录了FGNet简单的使用,如果对计算分析原理感兴趣的话,可以看看官方说明文档。官方说明文档

    2019年7月7日

    相关文章

      网友评论

        本文标题:基因功能富集调控网络分析--FGNet

        本文链接:https://www.haomeiwen.com/subject/gxurhctx.html